Holly B. Bratcher
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Holly B. Bratcher.
Microbiology | 2012
Keith A. Jolley; Carly M. Bliss; Julia S. Bennett; Holly B. Bratcher; Carina Brehony; Frances M. Colles; Helen Wimalarathna; Odile B. Harrison; Samuel K. Sheppard; Alison J. Cody; Martin C. J. Maiden
No single genealogical reconstruction or typing method currently encompasses all levels of bacterial diversity, from domain to strain. We propose ribosomal multilocus sequence typing (rMLST), an approach which indexes variation of the 53 genes encoding the bacterial ribosome protein subunits (rps genes), as a means of integrating microbial genealogy and typing. As with multilocus sequence typing (MLST), rMLST employs curated reference sequences to identify gene variants efficiently and rapidly. The rps loci are ideal targets for a universal characterization scheme as they are: (i) present in all bacteria; (ii) distributed around the chromosome; and (iii) encode proteins which are under stabilizing selection for functional conservation. Collectively, the rps loci exhibit variation that resolves bacteria into groups at all taxonomic and most typing levels, providing significantly more resolution than 16S small subunit rRNA gene phylogenies. A web-accessible expandable database, comprising whole-genome data from more than 1900 bacterial isolates, including 28 draft genomes assembled de novo from the European Bioinformatics Institute (EBI) sequence read archive, has been assembled. The rps gene variation catalogued in this database permits rapid and computationally non-intensive identification of the phylogenetic position of any bacterial sequence at the domain, phylum, class, order, family, genus, species and strain levels. The groupings generated with rMLST data are consistent with current nomenclature schemes and independent of the clustering algorithm used. This approach is applicable to the other domains of life, potentially providing a rational and universal approach to the classification of life that is based on one of its fundamental features, the translation mechanism.
Emerging Infectious Diseases | 2013
Odile B. Harrison; Heike Claus; Ying Jiang; Julia S. Bennett; Holly B. Bratcher; Keith A. Jolley; Craig Corton; Rory Care; Jan Poolman; Wendell D. Zollinger; Carl E. Frasch; David S. Stephens; Ian M. Feavers; Matthias Frosch; Julian Parkhill; Ulrich Vogel; Michael A. Quail; Stephen D. Bentley; Martin C. J. Maiden
Pathogenic Neisseria meningitidis isolates contain a polysaccharide capsule that is the main virulence determinant for this bacterium. Thirteen capsular polysaccharides have been described, and nuclear magnetic resonance spectroscopy has enabled determination of the structure of capsular polysaccharides responsible for serogroup specificity. Molecular mechanisms involved in N. meningitidis capsule biosynthesis have also been identified, and genes involved in this process and in cell surface translocation are clustered at a single chromosomal locus termed cps. The use of multiple names for some of the genes involved in capsule synthesis, combined with the need for rapid diagnosis of serogroups commonly associated with invasive meningococcal disease, prompted a requirement for a consistent approach to the nomenclature of capsule genes. In this report, a comprehensive description of all N. meningitidis serogroups is provided, along with a proposed nomenclature, which was presented at the 2012 XVIIIth International Pathogenic Neisseria Conference.
Journal of Infection | 2015
Jay Lucidarme; Dorothea M. C. Hill; Holly B. Bratcher; Steve J. Gray; Mignon du Plessis; Raymond S. W. Tsang; Julio A. Vázquez; Muhamed-Kheir Taha; Mehmet Ceyhan; Adriana M. Efron; Maria Cecília Outeiro Gorla; Jamie Findlow; Keith A. Jolley; Martin C. J. Maiden; Ray Borrow
Summary Objectives Neisseria meningitidis is a leading cause of meningitis and septicaemia. The hyperinvasive ST-11 clonal complex (cc11) caused serogroup C (MenC) outbreaks in the US military in the 1960s and UK universities in the 1990s, a global Hajj-associated serogroup W (MenW) outbreak in 2000–2001, and subsequent MenW epidemics in sub-Saharan Africa. More recently, endemic MenW disease has expanded in South Africa, South America and the UK, and MenC cases have been reported among European and North American men who have sex with men (MSM). Routine typing schemes poorly resolve cc11 so we established the population structure at genomic resolution. Methods Representatives of these episodes and other geo-temporally diverse cc11 meningococci (n = 750) were compared across 1546 core genes and visualised on phylogenetic networks. Results MenW isolates were confined to a distal portion of one of two main lineages with MenB and MenC isolates interspersed elsewhere. An expanding South American/UK MenW strain was distinct from the ‘Hajj outbreak’ strain and a closely related endemic South African strain. Recent MenC isolates from MSM in France and the UK were closely related but distinct. Conclusions High resolution ‘genomic’ multilocus sequence typing is necessary to resolve and monitor the spread of diverse cc11 lineages globally.
BMC Genomics | 2014
Holly B. Bratcher; Craig Corton; Keith A. Jolley; Julian Parkhill; Martin C. J. Maiden
BackgroundHighly parallel, ‘second generation’ sequencing technologies have rapidly expanded the number of bacterial whole genome sequences available for study, permitting the emergence of the discipline of population genomics. Most of these data are publically available as unassembled short-read sequence files that require extensive processing before they can be used for analysis. The provision of data in a uniform format, which can be easily assessed for quality, linked to provenance and phenotype and used for analysis, is therefore necessary.ResultsThe performance of de novo short-read assembly followed by automatic annotation using the pubMLST.org Neisseria database was assessed and evaluated for 108 diverse, representative, and well-characterised Neisseria meningitidis isolates. High-quality sequences were obtained for >99% of known meningococcal genes among the de novo assembled genomes and four resequenced genomes and less than 1% of reassembled genes had sequence discrepancies or misassembled sequences. A core genome of 1600 loci, present in at least 95% of the population, was determined using the Genome Comparator tool. Genealogical relationships compatible with, but at a higher resolution than, those identified by multilocus sequence typing were obtained with core genome comparisons and ribosomal protein gene analysis which revealed a genomic structure for a number of previously described phenotypes. This unified system for cataloguing Neisseria genetic variation in the genome was implemented and used for multiple analyses and the data are publically available in the PubMLST Neisseria database.ConclusionsThe de novo assembly, combined with automated gene-by-gene annotation, generates high quality draft genomes in which the majority of protein-encoding genes are present with high accuracy. The approach catalogues diversity efficiently, permits analyses of a single genome or multiple genome comparisons, and is a practical approach to interpreting WGS data for large bacterial population samples. The method generates novel insights into the biology of the meningococcus and improves our understanding of the whole population structure, not just disease causing lineages.
Journal of Clinical Microbiology | 2012
Keith A. Jolley; Dorothea M. C. Hill; Holly B. Bratcher; Odile B. Harrison; Ian M. Feavers; Julian Parkhill; Martin C. J. Maiden
ABSTRACT The increase in the capacity and reduction in cost of whole-genome sequencing methods present the imminent prospect of such data being used routinely in real time for investigations of bacterial disease outbreaks. For this to be realized, however, it is necessary that generic, portable, and robust analysis frameworks be available, which can be readily interpreted and used in real time by microbiologists, clinicians, and public health epidemiologists. We have achieved this with a set of analysis tools integrated into the PubMLST.org website, which can in principle be used for the analysis of any pathogen. The approach is demonstrated with genomic data from isolates obtained during a well-characterized meningococcal disease outbreak at the University of Southampton, United Kingdom, that occurred in 1997. Whole-genome sequence data were collected, de novo assembled, and deposited into the PubMLST Neisseria BIGSdb database, which automatically annotated the sequences. This enabled the immediate and backwards-compatible classification of the isolates with a number of schemes, including the following: conventional, extended, and ribosomal multilocus sequence typing (MLST, eMLST, and rMLST); antigen gene sequence typing (AGST); analysis based on genes conferring antibiotic susceptibility. The isolates were also compared to a reference isolate belonging to the same clonal complex (ST-11) at 1,975 loci. Visualization of the data with the NeighborNet algorithm, implemented in SplitsTree 4 within the PubMLST website, permitted complete resolution of the outbreak and related isolates, demonstrating that multiple closely related but distinct strains were simultaneously present in asymptomatic carriage and disease, with two causing disease and one responsible for the outbreak itself.
Clinical Infectious Diseases | 2015
Alice Deasy; Ed Guccione; Adam P. Dale; Nick Andrews; Cariad M. Evans; Julia S. Bennett; Holly B. Bratcher; Martin C. J. Maiden; Andrew Gorringe; Robert C. Read
BACKGROUND Herd protection by meningococcal vaccines is conferred by population-level reduction of meningococcal nasopharyngeal colonization. Given the inverse epidemiological association between colonization by commensal Neisseria lactamica and meningococcal disease, we investigated whether controlled infection of human volunteers with N. lactamica prevents colonization by Neisseria meningitidis. METHODS In a block-randomized human challenge study, 310 university students were inoculated with 10(4) colony-forming units of N. lactamica or were sham-inoculated, and carriage was monitored for 26 weeks, after which all participants were reinoculated with N. lactamica and resampled 2 weeks later. RESULTS At baseline, natural N. meningitidis carriage in the control group was 22.4% (36/161), which increased to 33.6% (48/143) by week 26. Two weeks after inoculation of N. lactamica, 33.6% (48/143) of the challenge group became colonized with N. lactamica. In this group, meningococcal carriage reduced from 24.2% (36/149) at inoculation to 14.7% (21/143) 2 weeks after inoculation (-9.5%; P = .006). The inhibition of meningococcal carriage was only observed in carriers of N. lactamica, was due both to displacement of existing meningococci and to inhibition of new acquisition, and persisted over at least 16 weeks. Crossover inoculation of controls with N. lactamica replicated the result. Genome sequencing showed that inhibition affected multiple meningococcal sequence types. CONCLUSIONS The inhibition of meningococcal carriage by N. lactamica is even more potent than after glycoconjugate meningococcal vaccination. Neisseria lactamica or its components could be a novel bacterial medicine to suppress meningococcal outbreaks. This observation explains the epidemiological observation of natural immunity conferred by carriage of N. lactamica. CLINICAL TRIALS REGISTRATION NCT02249598.
Journal of Clinical Microbiology | 2012
Ulla Jounio; Annika Saukkoriipi; Holly B. Bratcher; Aini Bloigu; Raija Juvonen; Sylvi Silvennoinen-Kassinen; Ari Peitso; Terttu Harju; Olli Vainio; Markku Kuusi; Martin C. J. Maiden; Maija Leinonen; Helena Käyhty; Maija Toropainen
ABSTRACT The relationship between carriage and the development of invasive meningococcal disease is not fully understood. We investigated the changes in meningococcal carriage in 892 military recruits in Finland during a nonepidemic period (July 2004 to January 2006) and characterized all of the oropharyngeal meningococcal isolates obtained (n = 215) by using phenotypic (serogrouping and serotyping) and genotypic (porA typing and multilocus sequence typing) methods. For comparison, 84 invasive meningococcal disease strains isolated in Finland between January 2004 and February 2006 were also analyzed. The rate of meningococcal carriage was significantly higher at the end of military service than on arrival (18% versus 2.2%; P < 0.001). Seventy-four percent of serogroupable carriage isolates belonged to serogroup B, and 24% belonged to serogroup Y. Most carriage isolates belonged to the carriage-associated ST-60 clonal complex. However, 21.5% belonged to the hyperinvasive ST-41/44 clonal complex. Isolates belonging to the ST-23 clonal complex were cultured more often from oropharyngeal samples taken during the acute phase of respiratory infection than from samples taken at health examinations at the beginning and end of military service (odds ratio [OR], 6.7; 95% confidence interval [95% CI], 2.7 to 16.4). The ST-32 clonal complex was associated with meningococcal disease (OR, 17.8; 95% CI, 3.8 to 81.2), while the ST-60 clonal complex was associated with carriage (OR, 10.7; 95% CI, 3.3 to 35.2). These findings point to the importance of meningococcal vaccination for military recruits and also to the need for an efficacious vaccine against serogroup B isolates.
Journal of Clinical Microbiology | 2015
Bianca Törös; Sara Thulin Hedberg; Magnus Unemo; Susanne Jacobsson; Dorothea M. C. Hill; Per Olcén; Hans Fredlund; Holly B. Bratcher; Keith A. Jolley; Martin C. J. Maiden; Paula Mölling
ABSTRACT Invasive meningococcal disease (IMD) caused by Neisseria meningitidis serogroup Y has increased in Europe, especially in Scandinavia. In Sweden, serogroup Y is now the dominating serogroup, and in 2012, the serogroup Y disease incidence was 0.46/100,000 population. We previously showed that a strain type belonging to sequence type 23 was responsible for the increased prevalence of this serogroup in Sweden. The objective of this study was to investigate the serogroup Y emergence by whole-genome sequencing and compare the meningococcal population structure of Swedish invasive serogroup Y strains to those of other countries with different IMD incidence. Whole-genome sequencing was performed on invasive serogroup Y isolates from 1995 to 2012 in Sweden (n = 186). These isolates were compared to a collection of serogroup Y isolates from England, Wales, and Northern Ireland from 2010 to 2012 (n = 143), which had relatively low serogroup Y incidence, and two isolates obtained in 1999 in the United States, where serogroup Y remains one of the major causes of IMD. The meningococcal population structures were similar in the investigated regions; however, different strain types were prevalent in each geographic region. A number of genes known or hypothesized to have an impact on meningococcal virulence were shown to be associated with different strain types and subtypes. The reasons for the IMD increase are multifactorial and are influenced by increased virulence, host adaptive immunity, and transmission. Future genome-wide association studies are needed to reveal additional genes associated with serogroup Y meningococcal disease, and this work would benefit from a complete serogroup Y meningococcal reference genome.
PLOS ONE | 2010
Elisabeth Kugelberg; Bridget Gollan; Christopher Farrance; Holly B. Bratcher; Jay Lucidarme; Ana Belén Ibarz-Pavón; Martin C. J. Maiden; Ray Borrow; Christoph M. Tang
Previously we have shown that insertion of IS1301 in the sia/ctr intergenic region (IGR) of serogroup C Neisseria meningitidis (MenC) isolates from Spain confers increased resistance against complement-mediated killing. Here we investigate the significance of IS1301 in the same location in N. meningitidis isolates from the UK. PCR and sequencing was used to screen a collection of more than 1500 meningococcal carriage and disease isolates from the UK for the presence of IS1301 in the IGR. IS1301 was not identified in the IGR among vaccine failure strains but was frequently found in serogroup B isolates (MenB) from clonal complex 269 (cc269). Almost all IS1301 insertions in cc269 were associated with novel polymorphisms, and did not change capsule expression or resistance to human complement. After excluding sequence types (STs) distant from the central genotype within cc269, there was no significant difference for the presence of IS1301 in the IGR of carriage isolates compared to disease isolates. Isolates with insertion of IS1301 in the IGR are not responsible for MenC disease in UK vaccine failures. Novel polymorphisms associated with IS1301 in the IGR of UK MenB isolates do not lead to the resistance phenotype seen for IS1301 in the IGR of MenC isolates.
International Journal of Systematic and Evolutionary Microbiology | 2016
Nathan J. Weyand; Mancheong Ma; Megan Phifer-Rixey; Nyiawung A. Taku; María A. Rendón; Alyson M. Hockenberry; Won Jong Kim; Al Agellon; Nicolas Biais; Taichi A. Suzuki; Lily Goodyer-Sait; Odile B. Harrison; Holly B. Bratcher; Michael W. Nachman; Martin C. J. Maiden; Magdalene So
Members of the genus Neisseria have been isolated from or detected in a wide range of animals, from non-human primates and felids to a rodent, the guinea pig. By means of selective culture, biochemical testing, Gram staining and PCR screening for the Neisseria-specific internal transcribed spacer region of the rRNA operon, we isolated four strains of the genus Neisseria from the oral cavity of the wild house mouse, Mus musculus subsp. domesticus. The isolates are highly related and form a separate clade in the genus, as judged by tree analyses using either multi-locus sequence typing of ribosomal genes or core genes. One isolate, provisionally named Neisseria musculi sp. nov. (type strain AP2031T=DSM 101846T=CCUG 68283T=LMG 29261T), was studied further. Strain AP2031T/N. musculi grew well in vitro. It was naturally competent, taking up DNA in a DNA uptake sequence and pilT-dependent manner, and was amenable to genetic manipulation. These and other genomic attributes of N. musculi sp. nov. make it an ideal candidate for use in developing a mouse model for studying Neisseria-host interactions.