Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holly H. Ganz is active.

Publication


Featured researches published by Holly H. Ganz.


PLOS Neglected Tropical Diseases | 2012

Distribution and Molecular Evolution of Bacillus anthracis Genotypes in Namibia

Wolfgang Beyer; Steve E. Bellan; Gisela Eberle; Holly H. Ganz; Wayne M. Getz; Renate Haumacher; Karen A. Hilss; Werner Kilian; Judith Lazak; Wendy C. Turner; Peter C. B. Turnbull

The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983–2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological relationships.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites

Wendy C. Turner; Kyrre L. Kausrud; Yathin S. Krishnappa; Joris P. G. M. Cromsigt; Holly H. Ganz; Isaac Mapaure; Claudine C. Cloete; Zepee Havarua; Martina Küsters; Wayne M. Getz; Nils Chr. Stenseth

Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues.


Mbio | 2017

Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems

Joanne B. Emerson; Rachel I. Adams; Clarisse M. Betancourt Román; Brandon Brooks; David A. Coil; Katherine E. Dahlhausen; Holly H. Ganz; Erica M. Hartmann; Tiffany Y. Hsu; Nicholas B. Justice; Ivan G. Paulino-Lima; Julia C. Luongo; Despoina S. Lymperopoulou; Cinta Gomez-Silvan; Brooke Rothschild-Mancinelli; Melike Balk; Curtis Huttenhower; Andreas Nocker; Parag Vaishampayan; Lynn J. Rothschild

While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.


PLOS Neglected Tropical Diseases | 2014

Interactions between Bacillus anthracis and plants may promote anthrax transmission.

Holly H. Ganz; Wendy C. Turner; Eoin L. Brodie; Martina Küsters; Ying Shi; Heniritha Sibanda; Tamas Torok; Wayne M. Getz

Environmental reservoirs are essential in the maintenance and transmission of anthrax but are poorly characterized. The anthrax agent, Bacillus anthracis was long considered an obligate pathogen that is dormant and passively transmitted in the environment. However, a growing number of laboratory studies indicate that, like some of its close relatives, B. anthracis has some activity outside of its vertebrate hosts. Here we show in the field that B. anthracis has significant interactions with a grass that could promote anthrax spore transmission to grazing hosts. Using a local, virulent strain of B. anthracis, we performed a field experiment in an enclosure within a grassland savanna. We found that B. anthracis increased the rate of establishment of a native grass (Enneapogon desvauxii) by 50% and that grass seeds exposed to blood reached heights that were 45% taller than controls. Further we detected significant effects of E. desvauxii, B. anthracis, and their interaction on soil bacterial taxa richness and community composition. We did not find any evidence for multiplication or increased longevity of B. anthracis in bulk soil associated with grass compared to controls. Instead interactions between B. anthracis and plants may result in increased host grazing and subsequently increased transmission to hosts.


PLOS ONE | 2014

Novel Giant Siphovirus from Bacillus anthracis Features Unusual Genome Characteristics

Holly H. Ganz; Christina Law; Martina Schmuki; Fritz Eichenseher; Richard Calendar; Martin J. Loessner; Wayne M. Getz; Jonas Korlach; Wolfgang Beyer; Jochen Klumpp

Here we present vB_BanS-Tsamsa, a novel temperate phage isolated from Bacillus anthracis, the agent responsible for anthrax infections in wildlife, livestock and humans. Tsamsa phage is a giant siphovirus (order Caudovirales), featuring a long, flexible and non-contractile tail of 440 nm (not including baseplate structure) and an isometric head of 82 nm in diameter. We induced Tsamsa phage in samples from two different carcass sites in Etosha National Park, Namibia. The Tsamsa phage genome is the largest sequenced Bacillus siphovirus, containing 168,876 bp and 272 ORFs. The genome features an integrase/recombinase enzyme, indicative of a temperate lifestyle. Among bacterial strains tested, the phage infected only certain members of the Bacillus cereus sensu lato group (B. anthracis, B. cereus and B. thuringiensis) and exhibited moderate specificity for B. anthracis. Tsamsa lysed seven out of 25 B. cereus strains, two out of five B. thuringiensis strains and six out of seven B. anthracis strains tested. It did not lyse B. anthracis PAK-1, an atypical strain that is also resistant to both gamma phage and cherry phage. The Tsamsa endolysin features a broader lytic spectrum than the phage host range, indicating possible use of the enzyme in Bacillus biocontrol.


PLOS ONE | 2014

Phylogeography of Bacillus anthracis in the country of Georgia shows evidence of population structuring and is dissimilar to other regional genotypes

Ekaterine Khmaladze; Dawn N. Birdsell; Amber Naumann; Christian Hochhalter; Meagan L. Seymour; Roxanne Nottingham; Stephen M. Beckstrom-Sternberg; James S. Beckstrom-Sternberg; Mikeljon P. Nikolich; Gvantsa Chanturia; Ekaterine Zhgenti; Mariam Zakalashvili; Lile Malania; Giorgi Babuadze; Nikoloz Tsertsvadze; Natalia Abazashvili; Merab Kekelidze; Shota Tsanava; Paata Imnadze; Holly H. Ganz; Wayne M. Getz; Ofori Pearson; Pawel Gajer; Mark Eppinger; Jacques Ravel; David M. Wagner; Richard T. Okinaka; James M. Schupp; Paul Keim; Talima Pearson

Sequence analyses and subtyping of Bacillus anthracis strains from Georgia reveal a single distinct lineage (Aust94) that is ecologically established. Phylogeographic analysis and comparisons to a global collection reveals a clade that is mostly restricted to Georgia. Within this clade, many groups are found around the country, however at least one subclade is only found in the eastern part. This pattern suggests that dispersal into and out of Georgia has been rare and despite historical dispersion within the country, for at least for one lineage, current spread is limited.


Ecosphere | 2012

Diversity and structure of soil bacterial communities associated with vultures in an African savanna

Holly H. Ganz; Ulas Karaoz; Wayne M. Getz; Wilferd Versfeld; Eoin L. Brodie

Bird guano has been shown to alter the structure and function of ecological communities. Here we characterize the effects of vulture guano on the phylogenetic structure, taxa richness, and abundance in soil bacterial communities within an African savanna. By altering soil chemistry and nutrient status, vulture guano appears to play a role in influencing the structure of soil bacterial communities. DNA was extracted from soil collected under twenty trees: five African white-backed vulture (Gyps africanus, WBV) nesting sites, five lappet-faced vulture (Torgos tracheliotos, LFV) nesting sites and ten control sites where no sign of vulture activity was detected. Using a high-density phylogenetic microarray (PhyloChip G2), we identified 1,803 bacterial Operational Taxonomic Units (OTUs) in the twenty samples. Analysis of beta-diversity using the Unifrac distance metric demonstrated that WBV nesting sites were phylogenetically distinct from both control trees and LFV nesting sites. We detected a higher degree of phylogenetic clustering in soil bacterial communities associated with both WBV and LFV nesting sites compared to control sites, suggesting that the deposition of guano increases the strength of habitat filtering in these communities. Canonical correspondence analysis revealed that variation in OTU intensity (a measure of relative abundance) could be related to variations in pH, electrical conductivity and total nitrogen content. WBV sites explained 10% to 22% of the variation in OTU intensity. The elevated total nitrogen and lower pH characteristic of soils associated with vultures may favor Proteobacteria and suppress Firmicutes, particularly Clostridia and Bacilli. Acidic aggregations of vulture guano may be unlikely to support long-term survival of spore-forming Firmicute pathogens and thus may limit the role that vultures play as potential disease vectors.


Scientific Reports | 2016

Lethal exposure: An integrated approach to pathogen transmission via environmental reservoirs

Wendy C. Turner; Kyrre L. Kausrud; Wolfgang Beyer; W. Ryan Easterday; Zoë R. Barandongo; Elisabeth Blaschke; Claudine C. Cloete; Judith Lazak; Matthew N. Van Ert; Holly H. Ganz; Peter C. B. Turnbull; Nils Chr. Stenseth; Wayne M. Getz

To mitigate the effects of zoonotic diseases on human and animal populations, it is critical to understand what factors alter transmission dynamics. Here we assess the risk of exposure to lethal concentrations of the anthrax bacterium, Bacillus anthracis, for grazing animals in a natural system over time through different transmission mechanisms. We follow pathogen concentrations at anthrax carcass sites and waterholes for five years and estimate infection risk as a function of grass, soil or water intake, age of carcass sites, and the exposure required for a lethal infection. Grazing, not drinking, seems the dominant transmission route, and transmission is more probable from grazing at carcass sites 1–2 years of age. Unlike most studies of virulent pathogens that are conducted under controlled conditions for extrapolation to real situations, we evaluate exposure risk under field conditions to estimate the probability of a lethal dose, showing that not all reservoirs with detectable pathogens are significant transmission pathways.


Journal of Microbiology & Biology Education | 2016

Crowdfunding Campaigns Help Researchers Launch Projects and Generate Outreach

Katherine E. Dahlhausen; Bethany Krebs; Jason Watters; Holly H. Ganz

Organizers of participatory research (citizen science) projects can generate funds and outreach through crowdfunding. Here we provide insights from three successful science crowdfunding campaigns recently completed on Indiegogo, Experiment, and Kickstarter. Choosing a crowdfunding platform that fits the project is just the beginning; a successful campaign reflects its content, management, and marketing, and some researchers may need to acquire new skills. In addition, the growing trend of crowdfunding for science reinforces the importance of academic engagement with social media.


mSystems | 2017

Community-Level Differences in the Microbiome of Healthy Wild Mallards and Those Infected by Influenza A Viruses

Holly H. Ganz; Ladan Doroud; Alana J. Firl; Sarah M. Hird; Jonathan A. Eisen; Walter M. Boyce

Seasonal influenza causes 3 to 5 million severe illnesses and 250,000 to 500,000 human deaths each year. While pandemic influenza viruses emerge only periodically, they can be devastating—for example, the 1918 H1N1 pandemic virus killed more than 20 million people. IAVs infect the respiratory tract and cause significant morbidity and mortality in humans. In contrast, IAVs infect the gastrointestinal tract of waterfowl, producing little pathology. Recent studies indicated that viruses can alter the microbiome at the respiratory and gastrointestinal mucosa, but there are no reports of how the microbiota of the natural host of influenza is affected by infection. Here we find that the mallard microbiome is altered during IAV infection. Our results suggest that detailed examination of humans and animals infected with IAVs may reveal individualized microbiome profiles that correspond to health and disease. Moreover, future studies should explore whether the altered microbiome facilitates maintenance and transmission of IAVs in waterfowl populations. ABSTRACT Waterfowl, especially ducks and geese, are primary reservoirs for influenza A viruses (IAVs) that evolve and emerge as important pathogens in domestic animals and humans. In contrast to humans, where IAVs infect the respiratory tract and cause significant morbidity and mortality, IAVs infect the gastrointestinal tract of waterfowl and cause little or no pathology and are spread by fecal-oral transmission. For this reason, we examined whether IAV infection is associated with differences in the cloacal microbiome of mallards (Anas platyrhyncos), an important host of IAVs in North America and Eurasia. We characterized bacterial community composition by sequencing the V4 region of 16S rRNA genes. IAV-positive mallards had lower species diversity, richness, and evenness than IAV-negative mallards. Operational taxonomic unit (OTU) cooccurrence patterns were also distinct depending on infection status. Network analysis showed that IAV-positive mallards had fewer significant cooccurring OTUs and exhibited fewer coassociation patterns among those OTUs than IAV-negative mallards. These results suggest that healthy mallards have a more robust and complex cloacal microbiome. By combining analytical approaches, we identified 41 bacterial OTUs, primarily representatives of Streptococcus spp., Veillonella dispar, and Rothia mucilaginosa, contributing to the observed differences. This study found that IAV-infected wild mallards exhibited strong differences in microbiome composition relative to noninfected mallards and identified a concise set of putative biomarker OTUs. Using Random Forest, a supervised machine learning method, we verified that these 41 bacterial OTUs are highly predictive of infection status. IMPORTANCE Seasonal influenza causes 3 to 5 million severe illnesses and 250,000 to 500,000 human deaths each year. While pandemic influenza viruses emerge only periodically, they can be devastating—for example, the 1918 H1N1 pandemic virus killed more than 20 million people. IAVs infect the respiratory tract and cause significant morbidity and mortality in humans. In contrast, IAVs infect the gastrointestinal tract of waterfowl, producing little pathology. Recent studies indicated that viruses can alter the microbiome at the respiratory and gastrointestinal mucosa, but there are no reports of how the microbiota of the natural host of influenza is affected by infection. Here we find that the mallard microbiome is altered during IAV infection. Our results suggest that detailed examination of humans and animals infected with IAVs may reveal individualized microbiome profiles that correspond to health and disease. Moreover, future studies should explore whether the altered microbiome facilitates maintenance and transmission of IAVs in waterfowl populations.

Collaboration


Dive into the Holly H. Ganz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne M. Getz

University of California

View shared research outputs
Top Co-Authors

Avatar

David A. Coil

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judith Lazak

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar

Claudine C. Cloete

Etosha Ecological Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge