Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holly Hilton is active.

Publication


Featured researches published by Holly Hilton.


The New England Journal of Medicine | 2012

RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors.

Fei Su; Amaya Viros; Carla Milagre; Kerstin Trunzer; Gideon Bollag; Olivia Spleiss; Jorge S. Reis-Filho; Xiangju Kong; Richard C. Koya; Keith T. Flaherty; Paul B. Chapman; Min Jung Kim; Robert Hayward; Matthew Martin; Hong Yang; Qiongqing Wang; Holly Hilton; Julie S. Hang; Johannes Noe; Maryou B. Lambros; Felipe C. Geyer; Nathalie Dhomen; Ion Niculescu-Duvaz; Alfonso Zambon; Dan Niculescu-Duvaz; Natasha Preece; Lidia Robert; Nicholas Otte; Stephen Mok; Damien Kee

BACKGROUND Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors. METHODS We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed. RESULTS Among 21 tumor samples, 13 had RAS mutations (12 in HRAS). In a validation set of 14 samples, 8 had RAS mutations (4 in HRAS). Thus, 60% (21 of 35) of the specimens harbored RAS mutations, the most prevalent being HRAS Q61L. Increased proliferation of HRAS Q61L-mutant cell lines exposed to vemurafenib was associated with mitogen-activated protein kinase (MAPK)-pathway signaling and activation of ERK-mediated transcription. In a mouse model of HRAS Q61L-mediated skin carcinogenesis, the vemurafenib analogue PLX4720 was not an initiator or a promoter of carcinogenesis but accelerated growth of the lesions harboring HRAS mutations, and this growth was blocked by concomitant treatment with a MEK inhibitor. CONCLUSIONS Mutations in RAS, particularly HRAS, are frequent in cutaneous squamous-cell carcinomas and keratoacanthomas that develop in patients treated with vemurafenib. The molecular mechanism is consistent with the paradoxical activation of MAPK signaling and leads to accelerated growth of these lesions. (Funded by Hoffmann-La Roche and others; ClinicalTrials.gov numbers, NCT00405587, NCT00949702, NCT01001299, and NCT01006980.).


Biochemical Pharmacology | 2012

The multifaceted exosome: Biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities

Saumya Pant; Holly Hilton; Michael E. Burczynski

Abstract Exosomes are bioactive vesicles derived from the cells endosomal membrane system and secreted into surrounding body fluids. Exosomes contain cell and cell-state specific cargos of protein, mRNA and miRNA. Exosome formation, cargo content, and delivery to surrounding cells is of immense biological interest considering the role that exosomes are believed to play in various pathological conditions. They aid antigen presentation by immune cells and can exhibit either anti-inflammatory or pro-inflammatory properties depending on the parent antigen-presenting cells conditioning. Viruses can hijack a host cells exosomal machinery to evade host defense systems aiding in the trans-infection of viruses. Tumor derived exosomes may help establish an oncogenic niche systemically via delivery of protein, mRNA, and miRNA that can aid angiogenesis, cell proliferation, and cell survival. Exosomes have also been implicated in the spread of neurodegenerative diseases. Studies have shown that exosomes are selectively taken up by cells distal from their release. They can reprogram the recipient cells due to their active molecular cargo. Cell-lineage and state-specific exosomes imply that they may therefore harbor body fluid-based biomarkers of unparalleled accuracy, particularly for tissues that are difficult or impossible to access. Exosome-specific membrane proteins provide markers enabling exosome identity and selection, while cell type and cell condition-specific protein, mRNA and miRNA cargo provide a rich potential source of biomarkers. This review serves to provide an overview of the current state of the science in the burgeoning field of exosome biology.


Cancer Research | 2009

Preclinical Profile of a Potent γ-Secretase Inhibitor Targeting Notch Signaling with In vivo Efficacy and Pharmacodynamic Properties

Leopoldo Luistro; Wei He; Melissa Smith; Kathryn Packman; Maria Vilenchik; Daisy Carvajal; John D. Roberts; James Cai; Windy Berkofsky-Fessler; Holly Hilton; Michael Linn; Alexander Flohr; Roland Jakob-Røtne; Helmut Jacobsen; Kelli Glenn; David C. Heimbrook; John Frederick Boylan

Notch signaling is an area of great interest in oncology. RO4929097 is a potent and selective inhibitor of gamma-secretase, producing inhibitory activity of Notch signaling in tumor cells. The RO4929097 IC50 in cell-free and cellular assays is in the low nanomolar range with >100-fold selectivity with respect to 75 other proteins of various types (receptors, ion channels, and enzymes). RO4929097 inhibits Notch processing in tumor cells as measured by the reduction of intracellular Notch expression by Western blot. This leads to reduced expression of the Notch transcriptional target gene Hes1. RO4929097 does not block tumor cell proliferation or induce apoptosis but instead produces a less transformed, flattened, slower-growing phenotype. RO4929097 is active following oral dosing. Antitumor activity was shown in 7 of 8 xenografts tested on an intermittent or daily schedule in the absence of body weight loss or Notch-related toxicities. Importantly, efficacy is maintained after dosing is terminated. Angiogenesis reverse transcription-PCR array data show reduced expression of several key angiogenic genes. In addition, comparative microarray analysis suggests tumor cell differentiation as an additional mode of action. These preclinical results support evaluation of RO4929097 in clinical studies using an intermittent dosing schedule. A multicenter phase I dose escalation study in oncology is under way.


The FASEB Journal | 2003

Cascades of transcriptional induction during dendritic cell maturation revealed by genome-wide expression analysis

Özlem Türeci; Hongjin Bian; Frank O. Nestle; Laura Raddrizzani; James Andrew Rosinski; Anatoli Tassis; Holly Hilton; Mark Walstead; Ugur Sahin; Juergen Hammer

Dendritic cells (DC) are central regulators of immunity. Signal‐induced maturation of DCs is assumed to be the starting point for specific immune responses. To further understand this process, we analyzed the alteration of transcript profiles along the time course of CD40 ligand‐induced maturation of human myeloid DCs by Affymetrix GeneChip® microarrays covering >6800 genes. Besides rediscovery of genes already described as associated with DC maturation proving reliability of the methods used, we identified clusterin as novel maturation marker. Looking across the time course, we observed synchronized kinetics of distinct functional groups of molecules whose temporal coregulation underscores known cellular events during dendritic cell maturation. For example, an early‐peaking wave of inflammatory chemokines was followed by a sustained increase of constitutive chemokines and accompanied by slow but continuous induction of survival proteins. After an immediate but transient induction of cytokine‐responsive transcripts, there was an increased expression of a group of genes involved in not only the regulation of cytokine effects, but also of transcription in general. Our results demonstrate that microarray studies along time courses combined with real‐time PCR not only discover new marker molecules with functional implications, but also dissect the molecular kinetics of biological processes identifying complex pathways of regulation.—Türeci, O. Bian, H., Nestle, F. O., Raddrizzani, L., Rosinski, J. A., Tassis, A., Hilton, H., Walstead, M., Sahin, U., Hammer, J. Cascades of transcriptional induction during dendritic cell maturation revealed by genome‐wide expression analysis FASEB J. 17, 836–847 (2003)


PLOS ONE | 2012

Systemic Biomarkers of Neutrophilic Inflammation, Tissue Injury and Repair in COPD Patients with Differing Levels of Disease Severity

Debra A. Cockayne; Donavan T. Cheng; Benjamin Waschki; Sriram Sridhar; Palanikumar Ravindran; Holly Hilton; Galina Kourteva; Hans Bitter; Sreekumar G. Pillai; Sudha Visvanathan; Kai-Christian Müller; Olaf Holz; Helgo Magnussen; Henrik Watz; Jay S. Fine

The identification and validation of biomarkers to support the assessment of novel therapeutics for COPD continues to be an important area of research. The aim of the current study was to identify systemic protein biomarkers correlated with measures of COPD severity, as well as specific protein signatures associated with comorbidities such as metabolic syndrome. 142 protein analytes were measured in serum of 140 patients with stable COPD, 15 smokers without COPD and 30 non-smoking controls. Seven analytes (sRAGE, EN-RAGE, NGAL, Fibrinogen, MPO, TGF-α and HB-EGF) showed significant differences between severe/very severe COPD, mild/moderate COPD, smoking and non-smoking control groups. Within the COPD subjects, univariate and multivariate analyses identified analytes significantly associated with FEV1, FEV1/FVC and DLCO. Most notably, a set of 5 analytes (HB-EGF, Fibrinogen, MCP-4, sRAGE and Sortilin) predicted 21% of the variability in DLCO values. To determine common functions/pathways, analytes were clustered in a correlation network by similarity of expression profile. While analytes related to neutrophil function (EN-RAGE, NGAL, MPO) grouped together to form a cluster associated with FEV1 related parameters, analytes related to the EGFR pathway (HB-EGF, TGF-α) formed another cluster associated with both DLCO and FEV1 related parameters. Associations of Fibrinogen with DLCO and MPO with FEV1/FVC were stronger in patients without metabolic syndrome (r  =  −0.52, p  = 0.005 and r  =  −0.61, p  = 0.023, respectively) compared to patients with coexisting metabolic syndrome (r  =  −0.25, p  = 0.47 and r  =  −0.15, p  = 0.96, respectively), and may be driving overall associations in the general cohort. In summary, our study has identified known and novel serum protein biomarkers and has demonstrated specific associations with COPD disease severity, FEV1, FEV1/FVC and DLCO. These data highlight systemic inflammatory pathways, neutrophil activation and epithelial tissue injury/repair processes as key pathways associated with COPD.


Human Molecular Genetics | 2013

Cigarette smoking induces small airway epithelial epigenetic changes with corresponding modulation of gene expression

Lauren J. Buro-Auriemma; Jacqueline Salit; Neil R. Hackett; Matthew S. Walters; Yael Strulovici-Barel; Michelle R. Staudt; Jennifer Fuller; Mai Mahmoud; Christopher S. Stevenson; Holly Hilton; Melisa W.Y. Ho; Ronald G. Crystal

The small airway epithelium (SAE), the first site of smoking-induced lung pathology, exhibits genome-wide changes in gene expression in response to cigarette smoking. Based on the increasing evidence that the epigenome can respond to external stimuli in a rapid manner, we assessed the SAE of smokers for genome-wide DNA methylation changes compared with nonsmokers, and whether changes in SAE DNA methylation were linked to the transcriptional output of these cells. Using genome-wide methylation analysis of SAE DNA of nonsmokers and smokers, the data identified 204 unique genes differentially methylated in SAE DNA of smokers compared with nonsmokers, with 67% of the regions with differential methylation occurring within 2 kb of the transcriptional start site. Among the genes with differential methylation were those related to metabolism, transcription, signal transduction and transport. For the differentially methylated genes, 35 exhibited a correlation with gene expression, 54% with an inverse correlation of DNA methylation with gene expression and 46% a direct correlation. These observations provide evidence that cigarette smoking alters the DNA methylation patterning of the SAE and that, for some genes, these changes are associated with the smoking-related changes in gene expression.


Arthritis & Rheumatism | 2013

Suppression of Glomerulonephritis in Lupus-Prone NZB × NZW Mice by RN486, a Selective Inhibitor of Bruton's Tyrosine Kinase

Paola Mina-Osorio; Jacob LaStant; Natalie D. Keirstead; Toni Whittard; Julia Ayala; Stella Stefanova; Rosario Garrido; Nena Dimaano; Holly Hilton; Mario Giron; Kai-Yeung Lau; Julie Hang; Jennifer Postelnek; Yong Kim; Soo Min; Alka Patel; John Woods; Meera Ramanujam; Julie DeMartino; Satwant Narula; Daigen Xu

OBJECTIVE Brutons tyrosine kinase (BTK) plays a critical role in B cell development and function. We recently described a selective BTK inhibitor, RN486, that blocks B cell receptor (BCR) and Fcγ receptor signaling and is efficacious in animal models of arthritis. The aim of this study was to examine the potential efficacy of BTK in systemic lupus erythematosus (SLE), using an NZB × NZW mouse model of spontaneous SLE. METHODS Mice received RN486 or its vehicle (administered in chow) at a final concentration of 30 mg/kg for 8 weeks, starting at 32 weeks of age. RESULTS The administration of RN486 completely stopped disease progression, as determined by histologic and functional analyses of glomerular nephritis. The efficacy was associated with striking inhibition of B cell activation, as demonstrated by a significant reduction in CD69 expression in response to BCR crosslinking. RN486 markedly reduced the secretion of IgG anti-double-stranded DNA (anti-dsDNA) secretion, as determined by enzyme-linked immunosorbent and enzyme-linked immunospot assays. Flow cytometric analysis demonstrated depletion of CD138(high) B220(low) plasma cells in the spleen. RN486 inhibited secretion of IgG anti-dsDNA but not IgM anti-dsDNA, suggesting that pharmacologic blockade of BTK resembles the reported transgenic expression of low levels of endogenous BTK in B cells. In addition, RN486 may also impact the effector function of autoantibodies, as evidenced by a significant reduction in immune complex-mediated activation of human monocytes in vitro and down-regulation of the expression of macrophage-related and interferon-inducible genes in both the kidneys and spleens of treated mice. CONCLUSION Collectively, our data suggest that BTK inhibitors may simultaneously target autoantibody-producing and effector cells in SLE, thus constituting a promising therapeutic alternative for this disease.


The FASEB Journal | 2003

Computational dissection of tissue contamination for identification of colon cancer-specific expression profiles

Özlem Türeci; Jiayi Ding; Holly Hilton; Hongjin Bian; Hitomi Ohkawa; Michael Braxenthaler; Gerhard Seitz; Laura Raddrizzani; Helmut Friess; Markus W. Büchler; Ugur Sahin; Juergen Hammer

Microarray profiles of bulk tumor tissues reflect gene expression corresponding to malignant cells as well as to many different types of contaminating normal cells. In this report, we assess the feasibility of querying baseline multitissue transcriptome databases to dissect disease‐specific genes. Using colon cancer as a model tumor, we show that the application of Boolean operators (AND, OR, BUTNOT) for database searches leads to genes with expression patterns of interest. The BUTNOT operator for example allows the assignment of “expression signatures” to normal tissue specimens. These expression signatures were then used to computationally identify contaminating cells within conventionally dissected tissue specimens. The combination of several logic operators together with an expression database based on multiple human tissue specimens can resolve the problem of tissue contamination, revealing novel cancer‐specific gene expression. Several markers, previously not known to be colon cancer associated, are provided.—Türeci, O., Ding, J., Hilton, H., Bian, H., Ohkawa, H., Braxenthaler, M., Seitz, G., Raddrizzani, L., Friess, H., Buchler, M., Sahin, U., Hammer, J. Computational dissection of tissue contamination for identification of colon cancer‐specific expression profiles. FASEB J. 17, 376–385 (2003)


Toxicological Sciences | 2010

Primary Endothelial Damage Is the Mechanism of Cardiotoxicity of Tubulin-Binding Drugs

Igor Mikaelian; Andreas Buness; Maria-Cristina de Vera-Mudry; Charu Kanwal; Denise Coluccio; Erik Roy Rasmussen; Hing Char; Valerie Carvajal; Holly Hilton; Juergen Funk; Jean-Christophe Hoflack; Mark R. Fielden; Frank Herting; Michael E. Dunn; Laura Suter-Dick

The use of tubulin binders (TBs) in the treatment of cancer often is associated with cardiotoxicity, the mechanism of which has not been elucidated. To test the hypothesis that interstitial cells of the myocardium are the primary target of TBs, we evaluated the acute effects of a single iv administration of three reference TBs: colchicine (0.2 and 2 mg/kg), vinblastine (0.5 and 3 mg/kg), and vincristine (0.1 and 1 mg/kg) 6 and 24 h after dosing. Mitotic arrest was identified at 24 h in all high-dose groups based on an increase in the number of mitotic figures in the interstitium coupled with a decrease in the number of Ki67-positive interstitial cells. Analysis of the myocardial transcriptomic data further supported G2/M cell cycle arrest 6 h after dosing with the high-dose groups of all three compounds. Apoptotic figures and an increase in the number of cleaved caspase 3-positive cells were identified at 6 and 24 h at the highest dose of each compound predominantly in interstitial cells, whereas a few cardiomyocytes were affected as well. Transcriptomic profiling of the myocardium further suggested that some of the affected interstitial cells were endothelial cells based on the upregulation of genes typically associated with vascular damage and downregulation of endothelial cell-specific molecule 1 and apelin. Taken together, these data identify endothelial cells of the myocardium as the primary target of the cardiotoxicity of TBs and identify cell cycle arrest as the mechanism of this toxicity.


Toxicologic Pathology | 2008

Temporal Gene Expression Profiling Indicates Early Up-regulation of Interleukin-6 in Isoproterenol-induced Myocardial Necrosis in Rat

Igor Mikaelian; Denise Coluccio; Kevin Morgan; Teona Johnson; Amber L. Ryan; Erik Roy Rasmussen; Rosemary Nicklaus; Charu Kanwal; Holly Hilton; Karl Frank; Luke Fritzky; Eric Wheeldon

Gene expression was evaluated in the myocardium of male Wistar rats after a single subcutaneous administration of 0.5 mg of isoproterenol, a β-adrenergic agonist that causes acute tachycardia with subsequent myocardial necrosis. Histology of the heart, clinical chemistry, and hematology were evaluated at 9 time points (0.5 hours to 14 days postinjection). Myocardial gene expression was evaluated at 4 time points (1 hour to 3 days). Contraction bands and loss of cross-striation were identified on phosphotungstic acid-hematoxylin-stained sections 0.5 hours postdosing. Plasma troponin I elevation was detected at 0.5 hours, peaked at 3 hours, and returned to baseline values at 3 days postdosing. Interleukin 6 (Il6) expression spiked at 1 to 3 hours and was followed by a short-lived, time-dependent dysregulation of its downstream targets. Concurrently and consistent with the kinetics of the histologic findings, many pathways indicative of necrosis/apoptosis (p38 mitogen-activated protein kinase [MAPK] signaling, NF-κB signaling) and adaptation to hypertension (PPAR signaling) were overrepresented at 3 hours. The 1-day and 3-day time points indicated an adaptive response, with down-regulation of the fatty acid metabolism pathway, up-regulation of the fetal gene program, and superimposed inflammation and repair at 3 days. These results suggest early involvement of Il6 in isoproterenol-induced myocardial necrosis and emphasize the value of early time points in transcriptomic studies.

Collaboration


Dive into the Holly Hilton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge