Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holly M. Horton is active.

Publication


Featured researches published by Holly M. Horton.


Cancer Research | 2008

Potent In vitro and In vivo Activity of an Fc-Engineered Anti-CD19 Monoclonal Antibody against Lymphoma and Leukemia

Holly M. Horton; Matthew J. Bernett; Erik Pong; Matthias Peipp; Seung Y. Chu; John Richards; Igor Vostiar; Patrick F. Joyce; Roland Repp; John R. Desjarlais; Eugene A. Zhukovsky

CD19 is a pan B-cell surface receptor expressed from pro-B-cell development until its down-regulation during terminal differentiation into plasma cells. CD19 represents an attractive immunotherapy target for cancers of lymphoid origin due to its high expression levels on the vast majority of non-Hodgkins lymphomas and some leukemias. A humanized anti-CD19 antibody with an engineered Fc domain (XmAb5574) was generated to increase binding to Fcgamma receptors on immune cells and thus increase Fc-mediated effector functions. In vitro, XmAb5574 enhanced antibody-dependent cell-mediated cytotoxicity 100-fold to 1,000-fold relative to an anti-CD19 IgG1 analogue against a broad range of B-lymphoma and leukemia cell lines. Furthermore, XmAb5574 conferred antibody-dependent cell-mediated cytotoxicity against patient-derived acute lymphoblastic leukemia and mantle cell lymphoma cells, whereas the IgG1 analogue was inactive. XmAb5574 also increased antibody-dependent cellular phagocytosis and apoptosis. In vivo, XmAb5574 significantly inhibited lymphoma growth in prophylactic and established mouse xenograft models, and showed more potent antitumor activity than its IgG1 analogue. Comparisons with a variant incapable of Fcgamma receptor binding showed that engagement of these receptors is critical for optimal antitumor efficacy. These results suggest that XmAb5574 exhibits potent tumor cytotoxicity via direct and indirect effector functions and thus warrants clinical evaluation as an immunotherapeutic for CD19(+) hematologic malignancies.


Journal of Immunology | 2011

Antibody-Mediated Coengagement of FcγRIIb and B Cell Receptor Complex Suppresses Humoral Immunity in Systemic Lupus Erythematosus

Holly M. Horton; Seung Y. Chu; Elizabeth C. Ortiz; Erik Pong; Saso Cemerski; Irene W.L. Leung; Noam Jacob; Jonathan Zalevsky; John R. Desjarlais; William Stohl; David Edmund Szymkowski

Engagement of the low-affinity Ab receptor FcγRIIb downregulates B cell activation, and its dysfunction is associated with autoimmunity in mice and humans. We engineered the Fc domain of an anti-human CD19 Ab to bind FcγRIIb with high affinity, promoting the coengagement of FcγRIIb with the BCR complex. This Ab (XmAb5871) stimulated phosphorylation of the ITIM of FcγRIIb and suppressed BCR-induced calcium mobilization, proliferation, and costimulatory molecule expression of human B cells from healthy volunteers and systemic lupus erythematosus (SLE) patients, as well as B cell proliferation induced by LPS, IL-4, or BAFF. XmAb5871 suppressed humoral immunity against tetanus toxoid and reduced serum IgM, IgG, and IgE levels in SCID mice engrafted with SLE or healthy human PBMC. XmAb5871 treatment also increased survival of mice engrafted with PBMC from a unique SLE patient. Unlike anti-CD20 Ab, coengagement of FcγRIIb and BCR complex did not promote B cell depletion in human PBMC cultures or in mice. Thus, amplification of the FcγRIIb inhibitory pathway in activated B cells may represent a novel B cell-targeted immunosuppressive therapeutic approach for SLE and other autoimmune diseases that should avoid the complications associated with B cell depletion.


Blood | 2010

Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies

Holly M. Horton; Matthew J. Bernett; Matthias Peipp; Erik Pong; Seung Y. Chu; John O. Richards; Hsing Chen; Roland Repp; John R. Desjarlais; Eugene A. Zhukovsky

CD40 is highly expressed on various B-lineage malignancies and represents an attractive immunotherapy target for neoplastic disease. Previous work showed that engineering the Fc domain of an antibody for increased binding to Fcγ receptors (FcγRs) significantly enhanced Fc-mediated immune effector function and antitumor activity in vitro and in vivo. We developed a humanized anti-CD40 antibody similarly Fc-engineered for increased FcγR binding (XmAbCD40) and compared its efficacy with that of an anti-CD40 native IgG1 analog and the anti-CD20 antibody rituximab. XmAbCD40 increased antibody-dependent cell-mediated cytotoxicity (ADCC) up to 150-fold relative to anti-CD40 IgG1 against B-lymphoma, leukemia, and multiple myeloma cell lines, and significantly enhanced ADCC against primary tumors. XmAbCD40 was also superior to rituximab in enhancing ADCC (both in cell lines and primary tumors) and in augmenting antibody-dependent cellular phagocytosis. XmAbCD40 significantly inhibited lymphoma growth in disseminated and established mouse xenografts and was more effective than the IgG1 analog or rituximab. An anti-CD40 antibody constructed to abrogate FcγR binding showed no reduction of tumor growth, indicating that the in vivo antitumor activity of XmAbCD40 is primarily mediated via FcγR-dependent mechanisms. These data demonstrate that XmAbCD40 displays potent antitumor efficacy and merits further evaluation for the treatment of CD40(+) malignancies.


The Journal of Allergy and Clinical Immunology | 2012

Reduction of total IgE by targeted coengagement of IgE B-cell receptor and FcγRIIb with Fc-engineered antibody

Seung Y. Chu; Holly M. Horton; Erik Pong; Irene W.L. Leung; Hsing Chen; Duc-Hanh T. Nguyen; Cristina Bautista; Umesh Muchhal; Matthew J. Bernett; Gregory L. Moore; David E. Szymkowski; John R. Desjarlais

BACKGROUND Sequestration of IgE to prevent its binding to high-affinity IgE receptor FcεRI on basophils and mast cells is an effective therapy for allergic asthma. IgE production requires differentiation of activated IgE(+) B cells into plasma cells upon allergen sensitization. B-cell receptor signaling is suppressed by the inhibitory IgG Fc receptor FcγRIIb; therefore, we reasoned that a therapeutic antibody that coengages FcγRIIb and IgE B-cell receptor would not only sequester IgE but also suppress its production by blocking IgE(+) B-cell activation and differentiation to IgE-secreting plasma cells. OBJECTIVE To explore the effects of IgE sequestration versus IgE suppression by comparing omalizumab to FcγRIIb-optimized anti-IgE antibodies in humanized mouse models of immunoglobulin production. METHODS By using a murine anti-IgE antibody as a template, we humanized, increased IgE binding, and modified its Fc domain to increase affinity for FcγRIIb. We next compared effects of this antibody (XmAb7195) versus omalizumab on the secretion of IgE and other isotypes in human PBMC cultures and in PBMC-engrafted severe combined immunodeficiency mice. RESULTS Relative to omalizumab, XmAb7195 has a 5-fold higher affinity for human IgE and more than 400-fold higher affinity for FcγRIIb. In addition to sequestering soluble IgE, XmAb7195 inhibited plasma cell differentiation and consequent human IgE production through coengagement of IgE B-cell receptor with FcγRIIb. In PBMC-engrafted mice, XmAb7195 reduced total human IgE (but not IgG or IgM) levels by up to 40-fold relative to omalizumab. CONCLUSION XmAb7195 acts by IgE sequestration coupled with an FcγRIIb-mediated inhibitory mechanism to suppress the formation of IgE-secreting plasma cells and reduce both free and total IgE levels.


Blood | 2012

Potent in vitro and in vivo activity of an Fc-engineered humanized anti-HM1.24 antibody against multiple myeloma via augmented effector function

Yu-Tzu Tai; Holly M. Horton; Sun-Young Kong; Erik Pong; Hsing Chen; Saso Cemerski; Matthew J. Bernett; Duc-Hanh T. Nguyen; Sher Karki; Seung Y. Chu; Greg A. Lazar; Nikhil C. Munshi; John R. Desjarlais; Kenneth C. Anderson; Umesh Muchhal

HM1.24, an immunologic target for multiple myeloma (MM) cells, has not been effectively targeted with therapeutic monoclonal antibodies (mAbs). In this study, we investigated in vitro and in vivo anti-MM activities of XmAb5592, a humanized anti-HM1.24 mAb with Fc-domain engineered to significantly enhance FcγR binding and associated immune effector functions. XmAb5592 increased antibody-dependent cellular cytotoxicity (ADCC) several fold relative to the anti-HM1.24 IgG1 analog against both MM cell lines and primary patient myeloma cells. XmAb5592 also augmented antibody dependent cellular phagocytosis (ADCP) by macrophages. Natural killer (NK) cells became more activated by XmAb5592 than the IgG1 analog, evidenced by increased cell surface expression of granzyme B-dependent CD107a and MM cell lysis, even in the presence of bone marrow stromal cells. XmAb5592 potently inhibited tumor growth in mice bearing human MM xenografts via FcγR-dependent mechanisms, and was significantly more effective than the IgG1 analog. Lenalidomide synergistically enhanced in vitro ADCC against MM cells and in vivo tumor inhibition induced by XmAb5592. A single dose of 20 mg/kg XmAb5592 effectively depleted both blood and bone marrow plasma cells in cynomolgus monkeys. These results support clinical development of XmAb5592, both as a monotherapy and in combination with lenalidomide, to improve patient outcome of MM.


mAbs | 2013

Immune suppression in cynomolgus monkeys by XPro9523: an improved CTLA4-Ig fusion with enhanced binding to CD80, CD86 and neonatal Fc receptor FcRn.

Matthew J. Bernett; Seung Y. Chu; Irene Leung; Gregory L. Moore; Sung-Hyung Lee; Erik Pong; Hsing I. Chen; Sheryl Phung; Umesh Muchhal; Holly M. Horton; Greg A. Lazar; John R. Desjarlais; David E. Szymkowski

The CTLA4-Ig fusion proteins abatacept and belatacept are clinically proven immunosuppressants used for rheumatoid arthritis and renal transplant, respectively. Given that both biologics are typically administered chronically by infusion, a need exists for a next-generation CTLA4-Ig with more convenient dosing. We used structure-based protein engineering to optimize the affinity of existing CTLA4-Ig therapeutics for the ligands CD80 and CD86, and for the neonatal Fc receptor, FcRn. From a rationally designed library, we identified four substitutions that enhanced binding to human CD80 and CD86. Coupled with two IgG1 Fc substitutions that enhanced binding to human FcRn, these changes comprise the novel CTLA4-Ig fusion protein, XPro9523. Compared with abatacept, XPro9523 demonstrated 5.9-fold, 23-fold, and 12-fold increased binding to CD80, CD86, and FcRn, respectively; compared with belatacept, CD80, CD86, and FcRn binding increased 1.5-fold, 7.7-fold, and 11-fold, respectively. XPro9523 and belatacept suppressed human T cell proliferation and IL-2 production more potently than abatacept. XPro9523 also suppressed inflammation in the mouse collagen-induced arthritis model. In cynomolgus monkeys, XPro9523 saturated CD80 and CD86 more effectively than abatacept and belatacept, potently inhibited IgM and IgG immunization responses, and demonstrated longer half-life. Pharmacokinetic modeling of its increased potency and persistence suggests that, in humans, XPro9523 may demonstrate superior efficacy and dosing convenience compared with abatacept and belatacept.


Methods of Molecular Biology | 2008

IL-2 Plasmid Electroporation: From Preclinical Studies to Phase I Clinical Trial

Holly M. Horton; Peggy Lalor; Alain Rolland

Electroporation (EP)-assisted intralesional delivery of Interleukin-2 (IL-2) plasmid (pDNA) has the potential to increase the local concentration of the expressed cytokine for an extended time in the injected tumors while minimizing its systemic concentration, in comparison with systemic delivery of the recombinant cytokine. Nonclinical Investigational New Drug application-enabling studies were performed in mice to evaluate the effect of intratumoral administration of murine IL-2 pDNA on local expression and systemic distribution of IL-2 transgene as well as the inhibition of established tumor growth. The safety of repeated administrations of a human IL-2 pDNA product candidate with EP was evaluated in rats. Following the nonclinical safety and efficacy studies, a human IL-2 pDNA product candidate intralesionally administered with EP to metastatic melanoma patients is currently being investigated in a phase I clinical trial.


Molecular Therapy | 2018

Prostaglandin E2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells

Garrett C. Heffner; Melissa Bonner; Lauryn Christiansen; Francis J. Pierciey; Dakota Campbell; Yegor Smurnyy; Wenliang Zhang; Amanda Hamel; Seema Shaw; Gretchen Lewis; Kendrick A. Goss; Olivia Garijo; Bruce E. Torbett; Holly M. Horton; Mitchell H. Finer; Philip D. Gregory; Gabor Veres

Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34+ hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E2 (PGE2) as a positive mediator of lentiviral transduction of CD34+ cells. Supplementation with PGE2 increased lentiviral vector (LVV) transduction of CD34+ cells approximately 2-fold compared to control transduction methods with no effect on cell viability. Transduction efficiency was consistently increased in primary CD34+ cells from multiple normal human donors and from patients with β-thalassemia or sickle cell disease. Notably, PGE2 increased transduction of repopulating human HSPCs in an immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 gamma receptor null [NSG]) xenotransplantation mouse model without evidence of in vivo toxicity, lineage bias, or a de novo bias of lentiviral integration sites. These data suggest that PGE2 improves lentiviral transduction and increases vector copy number, therefore resulting in increased transgene expression. As a result, PGE2 may be useful in clinical gene therapy applications using lentivirally modified HSPCs.


Molecular Therapy | 2016

229. PGE2 Increases Lentiviral Vector Transduction Efficiency of Human HSC

Garrett C. Heffner; Melissa Bonner; Dakota Campbell; Lauryn Christiansen; F. John Pierciey; Wen Zhang; Gretchen Lewis; Yegor Smurnyy; Amanda Hamel; Seema Shah; Holly M. Horton; Byoung Y. Ryu; Kendrick A. Goss; Olivier Negre; Gabor Veres; Christopher J. Horvath; Mitchell H. Finer; Philip D. Gregory

Gene therapy for congenital hematopoietic disorders frequently relies on ex vivo lentiviral transduction of isolated CD34+ hematopoietic progenitor cells. Through a high-throughput small molecule screen, we identified PGE2 as a positive mediator of lentiviral transduction of hematopoietic stem and progenitor cells enriched from mobilized peripheral blood (PB CD34+ cells). CD34+ cells transduced with a VSVG-pseudotyped lentiviral vector in the presence of cytokines and 10 uM PGE2 yielded a vector copy number per cell (VCN) approximately 2-fold higher than CD34+ cells transduced in the absence of PGE2. This effect was seen consistently in 16 of 16 tested normal human donors in vitro, as well as primary CD34+ cells from both thalassemia and sickle cell disease patients. Importantly, PGE2 was observed to improve transduction of prospectively-isolated CD34+CD38- hematopoietic stem cells - a sub-population thought to be enriched for the long term repopulating stem cell. Transduction improvements were not associated with increased viral entry, but were associated with elevated expression of cAMP genes, supporting a post-entry mechanism of action that involves cAMP signaling downstream of prostaglandin receptors. Lastly, in a mouse xenotransplantation model of hematopoietic stem cell transplant, transduction of PB CD34+ cells in the presence of PGE2 improved VCN levels in engrafted human CD45+ cells 4-5 months post-transplant by ~2-fold without adversely affecting overall human cell engraftment. These data suggest that PGE2-mediated improvements in lentiviral transduction of human CD34+ cells could result in higher transduction efficiency and provide potential benefit in clinical gene therapy applications.


Human Gene Therapy | 2018

Effective Targeting of Multiple B-Cell Maturation Antigen–Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells

Kevin Friedman; Tracy E. Garrett; John W. Evans; Holly M. Horton; Howard J. Latimer; Stacie L. Seidel; Christopher J. Horvath; Richard A. Morgan

B-cell maturation antigen (BCMA) expression has been proposed as a marker for the identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Consistent BCMA expression was confirmed on MM biopsies (29/29 BCMA+), and it was further demonstrated that BCMA is expressed in a substantial number of lymphoma samples, as well as primary chronic lymphocytic leukemia B cells. To target BCMA using redirected autologous T cells, lentiviral vectors (LVV) encoding chimeric antigen receptors (CARs) were constructed with four unique anti-BCMA single-chain variable fragments, fused to the CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains. One LVV, BB2121, was studied in detail, and BB2121 CAR-transduced T cells (bb2121) exhibited a high frequency of CAR + T cells and robust in vitro activity against MM cell lines, lymphoma cell lines, and primary chronic lymphocytic leukemia peripheral blood. Based on receptor quantification, bb2121 recognized tumor cells expressing as little as 222 BCMA molecules per cell. The in vivo pharmacology of anti-BCMA CAR T cells was studied in NSG mouse models of human MM, Burkitt lymphoma, and mantle cell lymphoma, where mice received a single intravenous administration of vehicle, control vector-transduced T cells, or anti-BCMA CAR-transduced T cells. In all models, the vehicle and control CAR T cells failed to inhibit tumor growth. In contrast, treatment with bb2121 resulted in rapid and sustained elimination of the tumors and 100% survival in all treatment models. Together, these data support the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also some lymphomas.

Collaboration


Dive into the Holly M. Horton's collaboration.

Top Co-Authors

Avatar

John R. Desjarlais

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip L. Felgner

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge