Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holly S. Cate is active.

Publication


Featured researches published by Holly S. Cate.


The Journal of Neuroscience | 2008

Gas6 Deficiency Increases Oligodendrocyte Loss and Microglial Activation in Response to Cuprizone-Induced Demyelination

Michele D. Binder; Holly S. Cate; Anne L. Prieto; Dennis Kemper; Helmut Butzkueven; Melissa Gresle; Tania Cipriani; Vilija Jokubaitis; Peter Carmeliet; Trevor J. Kilpatrick

The TAM family of receptor protein tyrosine kinases comprises three known members, namely Tyro3, Axl, and Mer. These receptors are widely expressed in the nervous system, including by oligodendrocytes, the cell type responsible for myelinating the CNS. We examined the potential role of the TAM family and of their principle cognate ligand, Gas6 (growth arrest gene 6), in modulating the phenotype of the cuprizone model of demyelination. We found that the expression profiles of Axl, Mer, and Gas6 mRNA were increased in the corpus callosum in a temporal profile correlating with the increased migration and proliferation of microglia/macrophages in this model. In contrast, expression of Tyro3 decreased, correlating with the loss of oligodendrocytes. Gas6 both promoted in vitro survival of oligodendrocytes (39.3 ± 3.1 vs 11.8 ± 2.4%) and modulated markers of activation in purified cultures of microglia (tumor necrosis factor α mRNA expression was reduced ∼48%). In Gas6−/− mice subjected to cuprizone-challenge, demyelination was greater than in control mice, within the rostral region of the corpus callosum, as assessed by luxol fast blue staining (myelination reduced by 36%) and by ultrastructural analysis. An increased loss of Gst-π (glutathione S-transferase-π)-positive oligodendrocytes was also identified throughout the corpus callosum of Gas6−/− mice. Microglial marker expression (ionized calcium-binding adapter molecule 1) was increased in Gas6−/− mice but was restricted to the rostral corpus callosum. Therefore, TAM receptor activation and regulation can independently influence both oligodendrocyte survival and the microglial response after CNS damage.


Marine and Freshwater Research | 2001

The sensory basis of feeding behaviour in the Caribbean spiny lobster, Panulirus argus

Charles D. Derby; Pascal Steullet; Amy J. Horner; Holly S. Cate

A complex nervous system enables spiny lobsters to have a rich behavioural repertoire. The present paper discusses the ways in which the sensory systems of the Caribbean spiny lobster, Panulirus argus, particularly its chemosensory systems, are involved in feeding behaviour. It addresses the neural mechanisms of three aspects of their food-finding ability: detection, identification, and discrimination of natural food odours; the effect of learning on responses to food odours; the mechanisms by which spiny lobsters orient to odours from a distance under natural flow conditions. It demonstrates that the olfactory organ of spiny lobsters might use acrossneuron response patterns in discriminating odour quality; that the hedonic value of food can be modified by experience, including associative and nonassociative conditioning; that spiny lobsters can readily orient to distant odour sources; and that both chemo- and mechanosensory antennular input are important in this behaviour. Either aesthetasc or nonaesthetasc chemosensory pathways can be used in identifying odour quality, mediating learned behaviours, and permitting orientation to the source of distant odours. Studying the neuroethology of feeding behaviour helps us understand how spiny lobsters are adapted to living in complex and variable environments.


Glia | 2008

Leukemia inhibitory factor signaling modulates both central nervous system demyelination and myelin repair

Mark Marriott; Ben Emery; Holly S. Cate; Michele D. Binder; Dennis Kemper; Qizhu Wu; Scott Kolbe; Ian Gordon; Hong Wang; Gary F. Egan; Simon S. Murray; Helmut Butzkueven; Trevor J. Kilpatrick

Leukemia inhibitory factor (LIF) receptor signaling limits the severity of inflammatory demyelination in experimental autoimmune encephalomyelitis, a T‐cell dependent animal model of multiple sclerosis (MS) [Butzkueven et al. ( 2002 ) Nat Med 8:613–619]. To identify whether LIF exerts direct effects within the central nervous system to limit demyelination, we have studied the influence of LIF upon the phenotype of mice challenged with cuprizone, a copper chelator, which produces a toxic oligodendrocytopathy. We find that exogenously administered LIF limits cuprizone‐induced demyelination. Knockout mice deficient in LIF exhibit both potentiated demyelination and oligodendrocyte loss after cuprizone challenge, an effect that is ameliorated by exogenous LIF, arguing for a direct beneficial effect of endogenous LIF receptor signaling. Numbers of oligodendrocyte progenitor cells in cuprizone‐challenged mice are not influenced by either exogenous LIF or LIF deficiency, arguing for effects directed to the differentiated oligodendrocyte. Studies on the influence of LIF upon remyelination after cuprizone challenge fail to reveal any significant effect of exogenous LIF. The LIF‐knockout mice do, however, display impaired remyelination, although oligodendrocyte replenishment, previously identified to occur from the progenitor pool, is not significantly compromised. Thus endogenous LIF receptor signaling is not only protective of oligodendrocytes but can also enhance remyelination, and exogenous LIF has therapeutic potential in limiting the consequences of oligodendrocyte damage.


The Journal of Neuroscience | 2012

Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination

Laura Jane Oluich; Jo Anne S. Stratton; Yao Lulu Xing; Sze Woei Ng; Holly S. Cate; Pankaj Sah; François Windels; Trevor J. Kilpatrick; Tobias D. Merson

The critical role of oligodendrocytes in producing and maintaining myelin that supports rapid axonal conduction in CNS neurons is well established. More recently, additional roles for oligodendrocytes have been posited, including provision of trophic factors and metabolic support for neurons. To investigate the functional consequences of oligodendrocyte loss, we have generated a transgenic mouse model of conditional oligodendrocyte ablation. In this model, oligodendrocytes are rendered selectively sensitive to exogenously administered diphtheria toxin (DT) by targeted expression of the diphtheria toxin receptor in oligodendrocytes. Administration of DT resulted in severe clinical dysfunction with an ascending spastic paralysis ultimately resulting in fatal respiratory impairment within 22 d of DT challenge. Pathologically, at this time point, mice exhibited a loss of ∼26% of oligodendrocyte cell bodies throughout the CNS. Oligodendrocyte cell-body loss was associated with moderate microglial activation, but no widespread myelin degradation. These changes were accompanied with acute axonal injury as characterized by structural and biochemical alterations at nodes of Ranvier and reduced somatosensory-evoked potentials. In summary, we have shown that a death signal initiated within oligodendrocytes results in subcellular changes and loss of key symbiotic interactions between the oligodendrocyte and the axons it ensheaths. This produces profound functional consequences that occur before the removal of the myelin membrane, i.e., in the absence of demyelination. These findings have clear implications for the understanding of the pathogenesis of diseases of the CNS such as multiple sclerosis in which the oligodendrocyte is potentially targeted.


The Journal of Neuroscience | 2012

Differential Modulation of the Oligodendrocyte Transcriptome by Sonic Hedgehog and Bone Morphogenetic Protein 4 via Opposing Effects on Histone Acetylation

Muzhou Wu; Marylens Hernandez; Siming Shen; Jennifer K. Sabo; Dipti Kelkar; Ju Wang; Robert O'Leary; Greg R. Phillips; Holly S. Cate; Patrizia Casaccia

Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is regulated by the interplay between extrinsic signals and intrinsic epigenetic determinants. In this study, we analyze the effect that the extracellular ligands sonic hedgehog (Shh) and bone morphogenetic protein 4 (BMP4), have on histone acetylation and gene expression in cultured OPCs. Shh treatment favored the progression toward oligodendrocytes by decreasing histone acetylation and inducing peripheral chromatin condensation. BMP4 treatment, in contrast, inhibited the progression toward oligodendrocytes and favored astrogliogenesis by favoring global histone acetylation and retaining euchromatin. Pharmacological treatment or silencing of histone deacetylase 1 (Hdac1) or histone deacetylase 2 (Hdac2) in OPCs did not affect BMP4-dependent astrogliogenesis, while it prevented Shh-induced oligodendrocyte differentiation and favored the expression of astrocytic genes. Transcriptional profiling of treated OPCs, revealed that BMP4-inhibition of oligodendrocyte differentiation was accompanied by increased levels of Wnt (Tbx3) and Notch-target genes (Jag1, Hes1, Hes5, Hey1, and Hey2), decreased recruitment of Hdac and increased histone acetylation at these loci. Similar upregulation of Notch-target genes and increased histone acetylation were observed in the corpus callosum of mice infused with BMP4 during cuprizone-induced demyelination. We conclude that Shh and Bmp4 differentially regulate histone acetylation and chromatin structure in OPCs and that BMP4 acts as a potent inducer of gene expression, including Notch and Wnt target genes, thereby enhancing the crosstalk among signaling pathways that are known to inhibit myelination and repair.


The Journal of Neuroscience | 2011

Remyelination Is Altered by Bone Morphogenic Protein Signaling in Demyelinated Lesions

Jennifer K. Sabo; Tim D. Aumann; Daniel Merlo; Trevor J. Kilpatrick; Holly S. Cate

Remyelination of the CNS involves the regeneration of mature oligodendrocytes by endogenous oligodendrocyte progenitor cells (OPCs). Previous studies have shown that bone morphogenic proteins (BMPs) inhibit the production of oligodendrocytes in the healthy CNS. However, there is currently no information on the influence of BMP signaling in vivo within demyelinated lesions of the brain or on subsequent remyelination. Here, we determine a role for BMP signaling in modulating oligodendrogliogenesis and remyelination in the brain following cuprizone-induced demyelination. We identified that BMP signaling is active in oligodendroglia and astrocytes within the demyelinated corpus callosum. Intraventricular infusion of BMP4 into the brains of mice during demyelination increased the proliferation of OPCs and, to a lesser extent, microglia and astrocytes in the corpus callosum. In contrast, infusion of Noggin, an extracellular antagonist of BMP4, increased the density of mature oligodendrocytes in the remyelinating corpus callosum. Additional evidence from myelin staining and electron microscopy indicates there is an increase in remyelinated axons in the corpus callosum of Noggin-infused mice. Thus, inhibition of endogenous BMP signaling during demyelination promotes mature oligodendrocyte regeneration and remyelination.


The Journal of Comparative Neurology | 2000

Functional units of a compound nose: Aesthetasc sensilla house similar populations of olfactory receptor neurons on the crustacean antennule

Pascal Steullet; Holly S. Cate; William C. Michel; Charles D. Derby

The lateral flagellum of the antennule of the spiny lobster Panulirus argus houses more than 1,000 morphologically similar olfactory sensilla, called aesthetascs. By using a high‐resolution activity labeling technique that depends on entry of agmatine into olfactory receptor neurons (ORNs) through cation channels during odor stimulation, we examined the distribution of different functional types of ORNs within and across mature aesthetascs. A significant number of ORNs in mature aesthetascs are labeled with agmatine during stimulation by single odorants, including adenosine‐5`‐monophosphate, ammonium chloride, cysteine, glycine, proline, and taurine. The percentage of ORNs per aesthetasc that was agmatine labeled during odor stimulation averaged 0.5–1.6% for single compounds and 4.6% for a 33‐component mimic of oyster tissue. For most antennules and antennular regions studied, the percentage of agmatine‐labeled ORNs by stimulation with single or complex odorants was statistically homogeneous across most or all aesthetascs. The extent of heterogeneity among mature aesthetascs was correlated with their age: extensive heterogeneity was observed only in the distal part of the flagellum containing the oldest aesthetascs and their ORNs. Thus, it appears that over most of the length of the aesthetasc‐bearing region of the lateral flagellum, different and distinct functional types of aesthetascs do not exist. Rather, aesthetascs appear to be repetitive morphological and functional units in olfactory coding. However, because odor sensitivity of ORNs can change with the age of an aesthetasc, some development‐related functional heterogeneity exists among aesthetascs. J. Comp. Neurol. 418:270–280, 2000.


Journal of Magnetic Resonance Imaging | 2008

MRI identification of the rostral-caudal pattern of pathology within the corpus callosum in the cuprizone mouse model.

Qizhu Wu; Qing Yang; Holly S. Cate; Dennis Kemper; Michele D. Binder; Hongxin Wang; Ke Fang; Melissa J. Quick; Mark Marriott; Trevor J. Kilpatrick; Gary F. Egan

To characterize and compare histological and MRI‐based changes within the corpus callosum (CC) in the cuprizone mouse model of multiple sclerosis (MS).


Journal of Neurochemistry | 2010

Modulation of bone morphogenic protein signalling alters numbers of astrocytes and oligodendroglia in the subventricular zone during cuprizone‐induced demyelination

Holly S. Cate; Jennifer K. Sabo; Daniel Merlo; Dennis Kemper; Tim D. Aumann; Julien Robinson; Toby D. Merson; Ben Emery; Victoria M. Perreau; Trevor J. Kilpatrick

J. Neurochem. (2010) 115, 11–22.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Suppressor of cytokine signaling 3 limits protection of leukemia inhibitory factor receptor signaling against central demyelination

Ben Emery; Holly S. Cate; Mark Marriott; Tobias D. Merson; Michele D. Binder; Cameron Snell; Pik Ying Soo; Simon S. Murray; Ben A. Croker; Jian Guo Zhang; Warren S. Alexander; Helen M. Cooper; Helmut Butzkueven; Trevor J. Kilpatrick

Enhancement of oligodendrocyte survival through activation of leukemia inhibitory factor receptor (LIFR) signaling is a candidate therapeutic strategy for demyelinating disease. However, in other cell types, LIFR signaling is under tight negative regulation by the intracellular protein suppressor of cytokine signaling 3 (SOCS3). We, therefore, postulated that deletion of the SOCS3 gene in oligodendrocytes would promote the beneficial effects of LIFR signaling in limiting demyelination. By studying wild-type and LIF-knockout mice, we established that SOCS3 expression by oligodendrocytes was induced by the demyelinative insult, that this induction depended on LIF, and that endogenously produced LIF was likely to be a key determinant of the CNS response to oligodendrocyte loss. Compared with wild-type controls, oligodendrocyte-specific SOCS3 conditional-knockout mice displayed enhanced c-fos activation and exogenous LIF-induced phosphorylation of signal transducer and activator of transcription 3. Moreover, these SOCS3-deficient mice were protected against cuprizone-induced oligodendrocyte loss relative to wild-type animals. These results indicate that modulation of SOCS3 expression could facilitate the endogenous response to CNS injury.

Collaboration


Dive into the Holly S. Cate's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Merlo

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge