Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holman C. Massey is active.

Publication


Featured researches published by Holman C. Massey.


Journal of Molecular Evolution | 1998

The Evolution of Hexamerins and the Phylogeny of Insects

Thorsten Burmester; Holman C. Massey; Stanislav O. Zakharkin; Helen Beneš

Abstract. The evolutionary relationships among arthropod hemocyanins and insect hexamerins were investigated. A multiple sequence alignment of 12 hemocyanin and 31 hexamerin subunits was constructed and used for studying sequence conservation and protein phylogeny. Although hexamerins and hemocyanins belong to a highly divergent protein superfamily and only 18 amino acid positions are identical in all the sequences, the core structures of the three protein domains are well conserved. Under the assumption of maximum parsimony, a phylogenetic tree was obtained that matches perfectly the assumed phylogeny of the insect orders. An interesting common clade of the hymenopteran and coleopteran hexamerins was observed. In most insect orders, several paralogous hexamerin subclasses were identified that diversified after the splitting of the major insect orders. The dipteran arylphorin/LSP-1-like hexamerins were subject to closer examination, demonstrating hexamerin gene amplification and gene loss in the brachyceran Diptera. The hexamerin receptors, which belong to the hexamerin/hemocyanin superfamily, diverged early in insect evolution, before the radiation of the winged insects. After the elimination of some rapidly or slowly evolving sequences, a linearized phylogenetic tree of the hexamerins was constructed under the assumption of a molecular clock. The inferred time scale of hexamerin evolution, which dates back to the Carboniferous, agrees with the available paleontological data and reveals some previously unknown divergence times among and within the insect orders.


International Journal for Parasitology | 2010

Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida)

Min Hu; James B. Lok; Najju Ranjit; Holman C. Massey; Paul W. Sternberg; Robin B. Gasser

Despite their phylogenetic diversity, parasitic nematodes share attributes of longevity and developmental arrest (=hypobiosis) with free-living nematodes at key points in their life cycles, particularly in larval stages responsible for establishing infection in the host. Insulin-like signalling plays crucial roles in the regulation of life span and arrest (=dauer formation) in the free-living nematode, Caenorhabditis elegans. Insulin-like signalling in C. elegans negatively regulates the fork head boxO (FoxO) transcription factor encoded by daf-16, which is linked to initiating a dauer-specific pattern of gene expression. Orthologues of daf-16 have been identified in several species of parasitic nematode. Although function has been demonstrated for an orthologue from the parasitic nematode Strongyloides stercoralis (Rhabditida), the functional capabilities of homologues/orthologues in bursate nematodes (Strongylida) are unknown. In the present study, we used a genomic approach to determine the structures of two complete daf-16 orthologues (designated Hc-daf-16.1 and Hc-daf-16.2) and their transcripts in the parasitic nematode Haemonchus contortus, and assessed their function(s) using C. elegans as a genetic surrogate. Unlike the multiple isoforms of Ce-DAF-16 and Ss-DAF-16, which are encoded by a single gene and produced by alternative splicing, mRNAs encoding the proteins Hc-DAF-16.1 and Hc-DAF-16.2 are transcribed from separate and distinct loci. Both orthologues are transcribed in all developmental stages and both sexes of H. contortus, and the inferred proteins (603 and 556 amino acids) each contain a characteristic, highly conserved fork head domain. In spite of distinct differences in genomic organisation compared with orthologues in C. elegans and S. stercoralis, genetic complementation studies demonstrated here that Hc-daf-16.2, but not Hc-daf-16.1, could restore daf-16 function to a C. elegans strain carrying a null mutation at this locus. These findings are consistent with previous results for S. stercoralis and demonstrate functional conservation of the daf-16b orthologue between key parasitic nematodes from two different taxonomic orders and C. elegans. We conclude from these experiments that the fork head transcription factor DAF-16 and, by inference, other insulin-like signalling elements, are conserved in H. contortus, a parasitic nematode of paramount economic importance. We demonstrate that functionality is sufficiently conserved in Hc-DAF-16.2 that it can replace Ce-DAF-16 in promoting dauer arrest in C. elegans.


PLOS Pathogens | 2012

Transposon-mediated Chromosomal Integration of Transgenes in the Parasitic Nematode Strongyloides ratti and Establishment of Stable Transgenic Lines

Hongguang Shao; Xinshe Li; Thomas J. Nolan; Holman C. Massey; Edward J. Pearce; James B. Lok

Genetic transformation is a potential tool for analyzing gene function and thereby identifying new drug and vaccine targets in parasitic nematodes, which adversely affect more than one billion people. We have previously developed a robust system for transgenesis in Strongyloides spp. using gonadal microinjection for gene transfer. In this system, transgenes are expressed in promoter-regulated fashion in the F1 but are silenced in subsequent generations, presumably because of their location in repetitive episomal arrays. To counteract this silencing, we explored transposon-mediated chromosomal integration of transgenes in S. ratti. To this end, we constructed a donor vector encoding green fluorescent protein (GFP) under the control of the Ss-act-2 promoter with flanking inverted tandem repeats specific for the piggyBac transposon. In three experiments, free-living Strongyloides ratti females were transformed with this donor vector and a helper plasmid encoding the piggyBac transposase. A mean of 7.9% of F1 larvae were GFP-positive. We inoculated rats with GFP-positive F1 infective larvae, and 0.5% of 6014 F2 individuals resulting from this host passage were GFP-positive. We cultured GFP-positive F2 individuals to produce GFP-positive F3 L3i for additional rounds of host and culture passage. Mean GFP expression frequencies in subsequent generations were 15.6% in the F3, 99.0% in the F4, 82.4% in the F5 and 98.7% in the F6. The resulting transgenic lines now have virtually uniform GFP expression among all progeny after at least 10 generations of passage. Chromosomal integration of the reporter transgenes was confirmed by Southern blotting and splinkerette PCR, which revealed the transgene flanked by S. ratti genomic sequences corresponding to five discrete integration sites. BLAST searches of flanking sequences against the S. ratti genome revealed integrations in five contigs. This result provides the basis for two powerful functional genomic tools in S. ratti: heritable transgenesis and insertional mutagenesis.


International Journal for Parasitology | 2003

Structure and developmental expression of Strongyloides stercoralis fktf-1, a proposed ortholog of daf-16 in Caenorhabditis elegans.

Holman C. Massey; Manami Nishi; Kshitiz Chaudhary; Nazzy Pakpour; James B. Lok

A forkhead transcription factor gene, fktf-1, which we propose to be orthologous to the Caenorhabditis elegans dauer-regulatory gene daf-16 has been discovered in the parasitic nematode Strongyloides stercoralis. Genomic and cDNA sequences from both species predict alternately spliced a and b message isoforms. In contrast to C. elegans, where two a isoforms, daf-16a1 and daf-16a2, are found, a single fktf-1a isoform is found in S. stercoralis. Five of the 10 introns found in the C. elegans gene are found in the proposed S. stercoralis ortholog. Functional motifs common to DAF-16 and several mammalian forkhead transcription factors are conserved in FKTF-1. These include the forkhead DNA binding domain, four Akt/protein kinase B phosphorylation sites and a C-terminal domain that may associate with factors such as the steroid receptor coactivator and other factors necessary for transcriptional regulation. An N-terminal serine-rich domain found in DAF-16A is greatly expanded in FKTF-1A. This domain is missing in DAF-16B, FKTF-1B and all mammalian orthologs. FKTF-1 shows the closest phylogenetic relationship to DAF-16 among all known mammalian and nematode forkhead transcription factors. Like its proposed Caenorhabditis ortholog, the fktf-1 message is expressed at all stages of the life cycle examined thus far. Discovery of fktf-1 indicates the presence of an insulin-like signalling pathway in S. stercoralis similar to that known to regulate dauer development in C. elegans. This pathway is a likely candidate to control infective larval arrest and reactivation as well as regulation of the switch between parasitic and free-living development in the parasite.


PLOS ONE | 2012

Strongyloides stercoralis age-1: A Potential Regulator of Infective Larval Development in a Parasitic Nematode

Jonathan D. Stoltzfus; Holman C. Massey; Thomas J. Nolan; Sandra D. Griffith; James B. Lok

Infective third-stage larvae (L3i) of the human parasite Strongyloides stercoralis share many morphological, developmental, and behavioral attributes with Caenorhabditis elegans dauer larvae. The ‘dauer hypothesis’ predicts that the same molecular genetic mechanisms control both dauer larval development in C. elegans and L3i morphogenesis in S. stercoralis. In C. elegans, the phosphatidylinositol-3 (PI3) kinase catalytic subunit AGE-1 functions in the insulin/IGF-1 signaling (IIS) pathway to regulate formation of dauer larvae. Here we identify and characterize Ss-age-1, the S. stercoralis homolog of the gene encoding C. elegans AGE-1. Our analysis of the Ss-age-1 genomic region revealed three exons encoding a predicted protein of 1,209 amino acids, which clustered with C. elegans AGE-1 in phylogenetic analysis. We examined temporal patterns of expression in the S. stercoralis life cycle by reverse transcription quantitative PCR and observed low levels of Ss-age-1 transcripts in all stages. To compare anatomical patterns of expression between the two species, we used Ss-age-1 or Ce-age-1 promoter::enhanced green fluorescent protein reporter constructs expressed in transgenic animals for each species. We observed conservation of expression in amphidial neurons, which play a critical role in developmental regulation of both dauer larvae and L3i. Application of the PI3 kinase inhibitor LY294002 suppressed L3i in vitro activation in a dose-dependent fashion, with 100 µM resulting in a 90% decrease (odds ratio: 0.10, 95% confidence interval: 0.08–0.13) in the odds of resumption of feeding for treated L3i in comparison to the control. Together, these data support the hypothesis that Ss-age-1 regulates the development of S. stercoralis L3i via an IIS pathway in a manner similar to that observed in C. elegans dauer larvae. Understanding the mechanisms by which infective larvae are formed and activated may lead to novel control measures and treatments for strongyloidiasis and other soil-transmitted helminthiases.


Parasitology | 2017

Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing.

James B. Lok; Hongguang Shao; Holman C. Massey; Xinshe Li

SUMMARY Transgenesis for Strongyloides and Parastrongyloides was accomplished in 2006 and is based on techniques derived for Caenorhabditis elegans over two decades earlier. Adaptation of these techniques has been possible because Strongyloides and related parasite genera carry out at least one generation of free-living development, with adult males and females residing in soil contaminated by feces from an infected host. Transgenesis in this group of parasites is accomplished by microinjecting DNA constructs into the syncytia of the distal gonads of free-living females. In Strongyloides stercoralis, plasmid-encoded transgenes are expressed in promoter-regulated fashion in the F1 generation following gene transfer but are silenced subsequently. Stable inheritance and expression of transgenes in S. stercoralis requires their integration into the genome, and stable lines have been derived from integrants created using the piggyBac transposon system. More direct investigations of gene function involving expression of mutant transgene constructs designed to alter intracellular trafficking and developmental regulation have shed light on the function of the insulin-regulated transcription factor Ss-DAF-16. Transgenesis in Strongyloides and Parastrongyloides opens the possibility of powerful new methods for genome editing and transcriptional manipulation in this group of parasites. Proof of principle for one of these, CRISPR/Cas9, is presented in this review.


Molecular and Biochemical Parasitology | 2011

Transgenesis in the parasitic nematode Strongyloides ratti.

Xinshe Li; Hongguang Shao; Ariel Junio; Thomas J. Nolan; Holman C. Massey; Edward J. Pearce; Mark Viney; James B. Lok

Strongyloides and related genera are advantageous subjects for transgenesis in parasitic nematodes, primarily by gonadal microinjection as has been used with Caenorhabditis elegans. Transgenesis has been achieved in Strongyloides stercoralis and in Parastrongyloides trichosuri, but both of these lack well-adapted, conventional laboratory hosts in which to derive transgenic lines. By contrast, Strongyloides ratti develops in laboratory rats with high efficiency and offers the added advantages of robust genomic and transcriptomic databases and substantial volumes of genetic, developmental and immunological data. Therefore, we evaluated methodology for transgenesis in S. stercoralis as a means of transforming S. ratti. S. stercoralis-based GFP reporter constructs were expressed in a proportion of F1 transgenic S. ratti following gonadal microinjection into parental free-living females. Frequencies of transgene expression in S. ratti, ranged from 3.7% for pAJ09 to 6.8% for pAJ20; respective frequencies for these constructs in S. stercoralis were 5.6% and 33.5%. Anatomical patterns of transgene expression were virtually identical in S. ratti and S. stercoralis. This is the first report of transgenesis in S. ratti, an important model organism for biological investigations of parasitic nematodes. Availability of the rat as a well-adapted laboratory host will facilitate derivation of transgenic lines of this parasite.


International Journal for Parasitology | 2013

Strongyloides stercoralis daf-2 encodes a divergent ortholog of Caenorhabditis elegans DAF-2

Holman C. Massey; Najju Ranjit; Jonathan D. Stoltzfus; James B. Lok

We hypothesise that developmental arrest in infectious larvae of parasitic nematodes is regulated by signalling pathways homologous to Caenorhabditis elegans DAF (dauer formation) pathways. Alignment of Strongyloides stercoralis (Ss) DAF-2 with DAF-2 of C. elegans and homologs of other species shows that most structural motifs in these insulin-like receptors are conserved. However, the catalytic domain of Ss-DAF-2 contains two substitutions (Q1242 and Q1256), that would result in constitutive dauer formation in C. elegans or diabetes in vertebrate animals. Ss-daf-2 also shows two alternately spliced isoforms, the constitutively expressed Ss-daf-2a, and Ss-daf-2b, which is only expressed in stages leading to parasitism.


International Journal for Parasitology | 2006

Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements *

Xinshe Li; Holman C. Massey; Thomas J. Nolan; Gerhard A. Schad; Kelly Kraus; Meera V. Sundaram; James B. Lok


PLOS Pathogens | 2009

Morphogenesis of Strongyloides stercoralis Infective Larvae Requires the DAF-16 Ortholog FKTF-1

Michelle L. Castelletto; Holman C. Massey; James B. Lok

Collaboration


Dive into the Holman C. Massey's collaboration.

Top Co-Authors

Avatar

James B. Lok

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Xinshe Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Nolan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Hongguang Shao

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard A. Schad

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Helen Beneš

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Najju Ranjit

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge