Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong-Hee Won is active.

Publication


Featured researches published by Hong-Hee Won.


Nature | 2016

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek; Konrad J. Karczewski; Eric Vallabh Minikel; Kaitlin E. Samocha; Eric Banks; Timothy Fennell; Anne H. O’Donnell-Luria; James S. Ware; Andrew Hill; Beryl B. Cummings; Taru Tukiainen; Daniel P. Birnbaum; Jack A. Kosmicki; Laramie Duncan; Karol Estrada; Fengmei Zhao; James Zou; Emma Pierce-Hoffman; Joanne Berghout; David Neil Cooper; Nicole Deflaux; Mark A. DePristo; Ron Do; Jason Flannick; Menachem Fromer; Laura Gauthier; Jackie Goldstein; Namrata Gupta; Daniel P. Howrigan; Adam Kiezun

Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human ‘knockout’ variants in protein-coding genes.


Nature | 2015

Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction

Ron Do; Nathan O. Stitziel; Hong-Hee Won; Anders Jørgensen; Stefano Duga; Pier Angelica Merlini; Adam Kiezun; Martin Farrall; Anuj Goel; Or Zuk; Illaria Guella; Rosanna Asselta; Leslie A. Lange; Gina M. Peloso; Paul L. Auer; Domenico Girelli; Nicola Martinelli; Deborah N. Farlow; Mark A. DePristo; Robert Roberts; Alex Stewart; Danish Saleheen; John Danesh; Stephen E. Epstein; Suthesh Sivapalaratnam; G. Kees Hovingh; John J. P. Kastelein; Nilesh J. Samani; Heribert Schunkert; Jeanette Erdmann

Summary Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, the role of inheritance is substantially greater1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3–8 whereas common variants at more than 45 loci have been associated with MI risk in the population9–15. Here, we evaluate the contribution of rare mutations to MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes where rare coding-sequence mutations were more frequent in cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare, damaging mutations (3.1% of cases versus 1.3% of controls) were at 2.4-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). This sequence-based estimate of the proportion of early MI cases due to LDLR mutations is remarkably similar to an estimate made more than 40 years ago using total cholesterol16. At apolipoprotein A-V (APOA5), carriers of rare nonsynonymous mutations (1.4% of cases versus 0.6% of controls) were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C318,19. When combined, these observations suggest that, beyond LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.


The New England Journal of Medicine | 2014

Inactivating mutations in NPC1L1 and protection from coronary heart disease

Nathan O. Stitziel; Hong-Hee Won; Alanna C. Morrison; Gina M. Peloso; Ron Do; Leslie A. Lange; Pierre Fontanillas; Namrata Gupta; Stefano Duga; Anuj Goel; Martin Farrall; Danish Saleheen; Paola G. Ferrario; Inke R. König; Rosanna Asselta; Piera Angelica Merlini; Nicola Marziliano; Maria Francesca Notarangelo; Ursula M. Schick; Paul L. Auer; Themistocles L. Assimes; Muredach P. Reilly; Robert L. Wilensky; Daniel J. Rader; G. Kees Hovingh; Thomas Meitinger; Thorsten Kessler; Adnan Kastrati; Karl-Ludwig Laugwitz; David S. Siscovick

BACKGROUND Ezetimibe lowers plasma levels of low-density lipoprotein (LDL) cholesterol by inhibiting the activity of the Niemann-Pick C1-like 1 (NPC1L1) protein. However, whether such inhibition reduces the risk of coronary heart disease is not known. Human mutations that inactivate a gene encoding a drug target can mimic the action of an inhibitory drug and thus can be used to infer potential effects of that drug. METHODS We sequenced the exons of NPC1L1 in 7364 patients with coronary heart disease and in 14,728 controls without such disease who were of European, African, or South Asian ancestry. We identified carriers of inactivating mutations (nonsense, splice-site, or frameshift mutations). In addition, we genotyped a specific inactivating mutation (p.Arg406X) in 22,590 patients with coronary heart disease and in 68,412 controls. We tested the association between the presence of an inactivating mutation and both plasma lipid levels and the risk of coronary heart disease. RESULTS With sequencing, we identified 15 distinct NPC1L1 inactivating mutations; approximately 1 in every 650 persons was a heterozygous carrier for 1 of these mutations. Heterozygous carriers of NPC1L1 inactivating mutations had a mean LDL cholesterol level that was 12 mg per deciliter (0.31 mmol per liter) lower than that in noncarriers (P=0.04). Carrier status was associated with a relative reduction of 53% in the risk of coronary heart disease (odds ratio for carriers, 0.47; 95% confidence interval, 0.25 to 0.87; P=0.008). In total, only 11 of 29,954 patients with coronary heart disease had an inactivating mutation (carrier frequency, 0.04%) in contrast to 71 of 83,140 controls (carrier frequency, 0.09%). CONCLUSIONS Naturally occurring mutations that disrupt NPC1L1 function were found to be associated with reduced plasma LDL cholesterol levels and a reduced risk of coronary heart disease. (Funded by the National Institutes of Health and others.).


American Journal of Human Genetics | 2007

Mutations in PRPS1, Which Encodes the Phosphoribosyl Pyrophosphate Synthetase Enzyme Critical for Nucleotide Biosynthesis, Cause Hereditary Peripheral Neuropathy with Hearing Loss and Optic Neuropathy (CMTX5)

Hee-Jin Kim; Kwang‐Min Sohn; Michael E. Shy; Karen M. Krajewski; Miok Hwang; June-Hee Park; Sue-Yon Jang; Hong-Hee Won; Byung-Ok Choi; Sung Hwa Hong; Byoung-Joon Kim; Yeon-Lim Suh; Soo-Youn Lee; Sun-Hee Kim; Jong-Won Kim

We have identified missense mutations at conserved amino acids in the PRPS1 gene on Xq22.3 in two families with a syndromic form of inherited peripheral neuropathy, one of Asian and one of European descent. The disease is inherited in an X-linked recessive manner, and the affected male patients invariably develop sensorineural hearing loss of prelingual type followed by gating disturbance and visual loss. The family of European descent was reported in 1967 as having Rosenberg-Chutorian syndrome, and recently a Korean family with the same symptom triad was identified with a novel disease locus CMTX5 on the chromosome band Xq21.32-q24. PRPS1 (phosphoribosyl pyrophosphate synthetase 1) is an isoform of the PRPS gene family and is ubiquitously expressed in human tissues, including cochlea. The enzyme mediates the biochemical step critical for purine metabolism and nucleotide biosynthesis. The mutations identified were E43D, in patients with Rosenberg-Chutorian syndrome, and M115T, in the Korean patients with CMTX5. We also showed decreased enzyme activity in patients with M115T. PRPS1 is the first CMT gene that encodes a metabolic enzyme, shedding a new light on the understanding of peripheral nerve-specific metabolism and also suggesting the potential of PRPS1 as a target for drugs in prevention and treatment of peripheral neuropathy by antimetabolite therapy.


PLOS ONE | 2013

SORL1 Is Genetically Associated with Late-Onset Alzheimer’s Disease in Japanese, Koreans and Caucasians

Akinori Miyashita; Asako Koike; Gyungah Jun; Li-San Wang; Satoshi Takahashi; Etsuro Matsubara; Takeshi Kawarabayashi; Mikio Shoji; Naoki Tomita; Hiroyuki Arai; Takashi Asada; Yasuo Harigaya; Masaki Ikeda; Masakuni Amari; Haruo Hanyu; Susumu Higuchi; Takeshi Ikeuchi; Masatoyo Nishizawa; Masaichi Suga; Yasuhiro Kawase; Hiroyasu Akatsu; Kenji Kosaka; Takayuki Yamamoto; Masaki Imagawa; Tsuyoshi Hamaguchi; Masahito Yamada; Takashi Moriaha; Masatoshi Takeda; Takeo Takao; Kenji Nakata

To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD), Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for 5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values <2×10−5 were genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1 SNP (rs3781834, P = 7.33×10−7 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide significance with rs11218343 (P = 1.77×10−9) and rs3781834 (P = 1.04×10−8). SNPs in previously established AD loci in Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P = 1.71×10−5) and rs744373 near BIN1 (P = 1.39×10−4). The associated allele for each of these SNPs was the same as in Caucasians. These data demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations.


Nature | 2017

Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity

Danish Saleheen; Pradeep Natarajan; Irina M. Armean; Wei Zhao; Asif Rasheed; Sumeet A. Khetarpal; Hong-Hee Won; Konrad J. Karczewski; Anne H. O’Donnell-Luria; Kaitlin E. Samocha; Benjamin Weisburd; Namrata Gupta; Mozzam Zaidi; Maria Samuel; Atif Imran; Shahid Abbas; Faisal Majeed; Madiha Ishaq; Saba Akhtar; Kevin Trindade; Megan Mucksavage; Nadeem Qamar; Khan Shah Zaman; Zia Yaqoob; Tahir Saghir; Syed Nadeem Hasan Rizvi; Anis Memon; Nadeem Hayyat Mallick; Mohammad Ishaq; Syed Zahed Rasheed

A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such ‘human knockouts’ can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a ‘human knockout project’, a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.


Cancer | 2012

Polymorphic markers associated with severe oxaliplatin-induced, chronic peripheral neuropathy in colon cancer patients†‡

Hong-Hee Won; Jeeyun Lee; Joon Oh Park; Young Suk Park; Ho Yeong Lim; Won Ki Kang; Jong-Won Kim; Soo-Youn Lee; Se Hoon Park

To identify potential genetic markers for severe oxaliplatin‐induced chronic peripheral neuropathy (OXCPN), the authors performed a genome‐wide association analysis of patients with colon cancer who received oxaliplatin‐based chemotherapy.


PLOS ONE | 2013

Predicting national suicide numbers with social media data

Hong-Hee Won; Woojae Myung; Gil-Young Song; Wonhee Lee; Jong-Won Kim; Bernard J. Carroll; Doh Kwan Kim

Suicide is not only an individual phenomenon, but it is also influenced by social and environmental factors. With the high suicide rate and the abundance of social media data in South Korea, we have studied the potential of this new medium for predicting completed suicide at the population level. We tested two social media variables (suicide-related and dysphoria-related weblog entries) along with classical social, economic and meteorological variables as predictors of suicide over 3 years (2008 through 2010). Both social media variables were powerfully associated with suicide frequency. The suicide variable displayed high variability and was reactive to celebrity suicide events, while the dysphoria variable showed longer secular trends, with lower variability. We interpret these as reflections of social affect and social mood, respectively. In the final multivariate model, the two social media variables, especially the dysphoria variable, displaced two classical economic predictors – consumer price index and unemployment rate. The prediction model developed with the 2-year training data set (2008 through 2009) was validated in the data for 2010 and was robust in a sensitivity analysis controlling for celebrity suicide effects. These results indicate that social media data may be of value in national suicide forecasting and prevention.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Myocardial Infarction–Associated SNP at 6p24 Interferes With MEF2 Binding and Associates With PHACTR1 Expression Levels in Human Coronary Arteries

Mélissa Beaudoin; Rajat M. Gupta; Hong-Hee Won; Ken Sin Lo; Ron Do; Christopher A. Henderson; Claire Lavoie-St-Amour; Simon Langlois; Daniel Rivas; Stephanie Lehoux; Sekar Kathiresan; Jean-Claude Tardif; Kiran Musunuru; Guillaume Lettre

Objective—Coronary artery disease (CAD), including myocardial infarction (MI), is the main cause of death in the world. Genome-wide association studies have identified dozens of single nucleotide polymorphisms (SNPs) associated with CAD/MI. One of the most robust CAD/MI genetic associations is with intronic SNPs in the gene PHACTR1 on chromosome 6p24. How these PHACTR1 SNPs influence CAD/MI risk, and whether PHACTR1 itself is the causal gene at the locus, is currently unknown. Approach and Results—Using genetic fine-mapping and DNA resequencing experiments, we prioritized an intronic SNP (rs9349379) in PHACTR1 as causal variant. We showed that this variant is an expression quantitative trait locus for PHACTR1 expression in human coronary arteries. Experiments in endothelial cell extracts confirmed that alleles at rs9349379 are differentially bound by the transcription factors myocyte enhancer factor-2. We engineered a deletion of this myocyte enhancer factor-2–binding site using CRISPR/Cas9 genome-editing methodology. Heterozygous endothelial cells carrying this deletion express 35% less PHACTR1. Finally, we found no evidence that PHACTR1 expression levels are induced when stimulating human endothelial cells with vascular endothelial growth factor, tumor necrosis factor-&agr;, or shear stress. Conclusions—Our results establish a link between intronic SNPs in PHACTR1, myocyte enhancer factor-2 binding, and transcriptional functions at the locus, PHACTR1 expression levels in coronary arteries and CAD/MI risk. Because PHACTR1 SNPs are not associated with the traditional risk factors for CAD/MI (eg, blood lipids or pressure, diabetes mellitus), our results suggest that PHACTR1 may influence CAD/MI risk through as yet unknown mechanisms in the vascular endothelium.


JAMA | 2017

Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease.

Amit Khera; Hong-Hee Won; Gina M. Peloso; Colm O'Dushlaine; Dajiang J. Liu; Nathan O. Stitziel; Pradeep Natarajan; Akihiro Nomura; Connor A. Emdin; Namrata Gupta; Ingrid B. Borecki; Rosanna Asselta; Stefano Duga; Piera Angelica Merlini; Adolfo Correa; Thorsten Kessler; James G. Wilson; Matthew J. Bown; Alistair S. Hall; Peter S. Braund; David J. Carey; Michael F. Murray; H. Lester Kirchner; Joseph B. Leader; Daniel R. Lavage; J. Neil Manus; Dustin N. Hartzel; Nilesh J. Samani; Heribert Schunkert; Jaume Marrugat

Importance The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene (LPL) lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship of LPL to human disease. Objective To determine whether rare and/or common variants in LPL are associated with early-onset coronary artery disease (CAD). Design, Setting, and Participants In a cross-sectional study, LPL was sequenced in 10 CAD case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between 2010 and 2015. Common variants were genotyped in up to 305 699 individuals of the Global Lipids Genetics Consortium and up to 120 600 individuals of the CARDIoGRAM Exome Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis. Exposures Rare damaging mutations in LPL included loss-of-function variants and missense variants annotated as pathogenic in a human genetics database or predicted to be damaging by computer prediction algorithms trained to identify mutations that impair protein function. Common variants in the LPL gene region included those independently associated with circulating triglyceride levels. Main Outcomes and Measures Circulating lipid levels and CAD. Results Among 46 891 individuals with LPL gene sequencing data available, the mean (SD) age was 50 (12.6) years and 51% were female. A total of 188 participants (0.40%; 95% CI, 0.35%-0.46%) carried a damaging mutation in LPL, including 105 of 32 646 control participants (0.32%) and 83 of 14 245 participants with early-onset CAD (0.58%). Compared with 46 703 noncarriers, the 188 heterozygous carriers of an LPL damaging mutation displayed higher plasma triglyceride levels (19.6 mg/dL; 95% CI, 4.6-34.6 mg/dL) and higher odds of CAD (odds ratio = 1.84; 95% CI, 1.35-2.51; P < .001). An analysis of 6 common LPL variants resulted in an odds ratio for CAD of 1.51 (95% CI, 1.39-1.64; P = 1.1 × 10−22) per 1-SD increase in triglycerides. Conclusions and Relevance The presence of rare damaging mutations in LPL was significantly associated with higher triglyceride levels and presence of coronary artery disease. However, further research is needed to assess whether there are causal mechanisms by which heterozygous lipoprotein lipase deficiency could lead to coronary artery disease.

Collaboration


Dive into the Hong-Hee Won's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seonwoo Kim

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Do

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge