Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong-Liang Xu is active.

Publication


Featured researches published by Hong-Liang Xu.


Journal of the American Chemical Society | 2009

Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response.

Shabbir Muhammad; Hong-Liang Xu; Yi Liao; Yuhe Kan; Zhong-Min Su

An innovative type of lithium decahydroborate (Li@B(10)H(14)) complex with a basketlike complexant of decaborane (B(10)H(14)) has been designed using quantum mechanical methods. As Li atom binds in a handle fashion to terminal electrophilic boron atoms of the decaborane basket, its NBO charge q (Li) is found to be 0.876, close to +1. This shows that the Li atom has been ionized to form a cation and an anion at the open end of B(10)H(14). The most fascinating feature of this Li doping is its loosely bound valence electron, which has been pulled into the cavity of the B(10)H(14) basket and become diffuse by the electron-deficient morphological features of the open end of the B(10)H(14) basket. Strikingly, the first hyperpolarizability (beta(0)) of Li@B(10)H(14) is about 340 times larger than that of B(10)H(14), computed to be 23,075 au (199 x 10(-30) esu) and 68 au, respectively. Besides this, the intercalation of the Li atom to the B(10)H(14) basket brings some distinctive changes in its Raman, (11)B NMR, and UV-vis spectra along with its other electronic properties that might be used by the experimentalists to identify this novel kind of Li@B(10)H(14) complex with a large electro-optical response. This study may evoke the possibility to explore a new thriving area, i.e., alkali metal-boranes for NLO application.


Applied Physics Letters | 2005

F-doping effects on electrical and optical properties of ZnO nanocrystalline films

Hong-Liang Xu; Y. C. Liu; R. Mu; C. L. Shao; Y.M. Lu; D.Z. Shen; X.W. Fan

F-doped and undoped ZnO nanocrystalline films were prepared from thermal oxidation of ZnF2 films deposited on a silica substrate by electron beam evaporation. The F-doped ZnO film has very low electrical resistivity of 7.95×10−4Ωcm and a high optical transmittance. The study also indicated that (1) the substitutional F atoms in the film serve as donors to increase the carrier concentration and the optical band gap with respect to undoped ZnO film, and (2) F passivation reduces the known number of Os2−/Os− surface states and increases carrier mobility.


IEEE Electron Device Letters | 2011

Flexible Resistive Switching Memory Device Based on Amorphous InGaZnO Film With Excellent Mechanical Endurance

Zhongqiang Wang; Hong-Liang Xu; X. H. Li; Xintong Zhang; Ying-Ying Liu; Y. C. Liu

Semitransparent flexible resistive-switching memory devices, using amorphous InGaZnO as the switching layer, are fabricated on plastic substrates at room temperature. The device shows high performance, excellent flexibility, and mechanical endurance in bending tests. No performance degradation occurs, and the stored information is not lost after bending the device to different angles and up to 105 times. Studies on the temperature-dependent electrical properties reveal that the conducting channels of the low-resistance state are composed of oxygen-deficient defects, and partial oxidation of these defects switches the device to the high-resistance state. The unique electronic structure and flexible mechanical properties of amorphous InGaZnO ensure stable device performance in flexible applications.


Journal of Materials Chemistry | 2012

The stability and nonlinear optical properties: Encapsulation of an excess electron compound LiCN⋯Li within boron nitride nanotubes

Rong-Lin Zhong; Hong-Liang Xu; Shabbir Muhammad; Ji Zhang; Zhong-Min Su

Excess electron compounds have been proposed to be novel candidates of high-performance nonlinear optical (NLO) materials because of their large static first hyperpolarizabilities (β0). To enhance the stability of an unstable excess electron compound (LiCN⋯Li) with an extremely large β0 value (310196 a.u.), we designed a boron nitride nanotube (BNNT) as a protective shield molecule to encapsulate it (in theory). The stability of LiCN⋯Li was enhanced: the vertical ionization potentials (VIP) of LiCN⋯Li increased after encapsulating. Therefore, by comparison with LiCN⋯Li, the encapsulated complexes are more difficult to oxidize. Significantly, the BNNT encapsulated LiCN⋯Li complex exhibits a considerable β0 value (10645 a.u.), which is significantly (almost 380 times) larger than 28 a.u. of BNNT. Our further investigations into the intrinsic hyperpolarizabilites (βint) of these compounds show that there are clearly dependencies of the NLO response on the transition energy. Furthermore, it is easy to encapsulate LiCN⋯Li from the B-rich edge rather than N-rich edge of BNNT due to the lower energy barrier, which makes our calculations more useful to experimentalists who may try to synthesize these compounds. Knowledge of the encapsulation process of LiCN⋯Li within BNNT provides a new strategy for the design and synthesis of stable high-performance NLO materials.


Chemistry: A European Journal | 2011

Boron/Nitrogen Substitution of the Central Carbon Atoms of the Biphenalenyl Diradical π Dimer: A Novel 2e–12c Bond and Large NLO Responses

Rong-Lin Zhong; Ji Zhang; Shabbir Muhammad; Yang-Yang Hu; Hong-Liang Xu; Zhong-Min Su

On the basis of the famous staggered biphenalenyl diradical π dimer 1, the eclipsed biphenalenyl (1a), with no centrosymmetry, was obtained by rotating a layer of 1 by 60° around its central axis. Furthermore, the central carbon atoms of 1 and 1a were substituted by boron and nitrogen atoms to form 2 and 2a with a novel 2e-12c bond. We found that the novel 2e-12c bond is formed by the electron pair of the occupied orbital of the phenalenyl monomer substituted by the nitrogen atom and the unoccupied orbital of the phenalenyl monomer substituted by the boron atom. As a result of the novel 2e-12c bond, 2 and 2a exhibit a fascinating interlayer charge-transfer transition character, which results in a significant difference in the dipole moments (Δμ) between the ground state and the crucial excited state. The values of Δμ for 2 and 2a are 6.4315 and 6.9253 Debye, clearly larger than the values of 0 and 0.0015 Debye for 1 and 1a. Significantly, the boron/nitrogen substitution effect can greatly enhance the first hyperpolarizabilities (β(0) ) of 2 and 2a with a novel 2e-12c bond compared with 1 and 1a with a traditional 2e-12c bond: 0 and 19 a.u. for 1 and 1a are much lower than 3516 and 12272 a.u. for 2 and 2a. Furthermore, the interaction energies (E(int) )of 2 and 2a are larger than those of 1 and 1a, which could be considered as a signature of reliability for the newly designed dimers. Our present work will be beneficial for further theoretical and experimental studies on the properties of molecules with the novel 2e-12c bond.


Nanoscale | 2013

Performance improvement of resistive switching memory achieved by enhancing local-electric-field near electromigrated Ag-nanoclusters

Zhongqiang Wang; Hong-Liang Xu; Lingyu Zhang; X. H. Li; Ji-Cheng Ma; Xintong Zhang; Y. C. Liu

By introducing Ag nanoclusters (NCs), ZnO-based resistive switching memory devices offer improved performance, including improved uniformity of switching parameters, and increased switching speed with excellent reliability. These Ag NCs are formed between the top-electrode (cathode) and the switching layer by an electromigration process in the initial several switching cycles. The electric field can be enhanced around Ag NCs due to their high surface curvature. The enhanced local-electric-field (LEF) results in (1) the localization of the switching site near Ag NCs, where oxygen-vacancy-based conducting filaments have a simple structure, and tend to connect Ag NCs along the LEF direction; (2) an increase in migration and recombination rates of oxygen ions and oxygen vacancies. These factors are responsible for the improvement in device performance.


Journal of Physical Chemistry A | 2011

Quantum chemical research on structures, linear and nonlinear optical properties of the Li@n-acenes salt (n = 1, 2, 3, and 4).

Cui-Cui Zhang; Hong-Liang Xu; Yang-Yang Hu; Shi-Ling Sun; Zhong-Min Su

On the basis of the n-acenes (n = 1, 2, 3 and 4), the α-Li@n-acenes and β-Li@n-acenes salts were selected to investigate how increasing the number n of conjugated benzenoid rings affects the linear and nonlinear optical responses. The α-Li@n-acenes and β-Li@n-acenes salts are obtained by a lithium atom substituting the α-H and β-H, respectively. In the present work, both ab initio (HF and MP2) and DFT (B3LYP, BhandHLYP, M05-2X, and CAM-B3LYP) methods are adopted to calculate the polarizability (α(0)) and first hyperpolarizability (β(tot)) of the α-Li@n-acenes and β-Li@n-acenes salts. MP2 results show that the α(0) values of both classes of lithium salts increase with increasing number n of conjugated benzenoid rings. Interestingly, we found that the β(tot) values of α-Li@n-acenes and β-Li@n-acenes salts take on opposite trends: the β(tot) values of α-Li@n-acenes are decreasing slowly (2187 for α-Li@benzene > 1978 for α-Li@naphthalene > 1898 for α-Li@anthrecene > 1830 au for α-Li@tetracene) and inceasing remarkably (2738 for β-Li@naphthalene < 3186 for β-Li@anthrecene < 3314 au for β-Li@tetracene) for β-Li@n-acenes. Furthermore, we found that the β(tot) values (2738-3314 au) of the β-Li@n-acenes are larger than those of the α-Li@n-acenes (1830-2187 au). On the other hand, comparing the results of different methods, the β(tot) values obtained by the M05-2X and CAM-B3LYP methods reproduce the polarizability and first hyperpolarizability of the α-Li@n-acenes and β-Li@n-acenes salts well, which test and verify the results of the MP2 method. Our present work may be beneficial to development of high-performance organic NLO optical materials.


Journal of Physical Chemistry A | 2011

Capturing a synergistic effect of a conical push and an inward pull in fluoro derivatives of Li@B10H14 basket: toward a higher vertical ionization potential and nonlinear optical response.

Shabbir Muhammad; Hong-Liang Xu; Zhong-Min Su

We present the design of fluoro derivatives of B(10)H(14) and Li@B(10)H(14) baskets. A synergistic effect of conical push and inward pull (reported independently in previous lithium nonlinear optical (NLO) complexes) has been explored in these derivatives to achieve a robustly large NLO response and a higher vertical ionization potential. Li@1,3,6,9-F(4)B(10)H(10), Li@6,9-F(2)B(10)H(12), and Li@2,4,6,9-F(4)B(10)H(10) exhibit first hyperpolarizability (β(0)) values as large as 181 624, 133 199, and 32 314 au; their vertical ionization potentials are 6.45, 6.30, and 6.78 eV, respectively. These values are significantly higher than those previously reported in Li-doped fluorocarbon chains at the same MP2/6-31+G* level of theory (Xu, H. L.; Li, Z. R.; Wu, D.; Wang, B. Q.; Li, Y.; Gu, F. L.; Aoki, Y. J. Am. Chem. Soc. 2007, 129, 2967). They also exceed those from our earlier designed Li@B(10)H(14) basket (Muhammad, S.; Xu, H. L.; Liao, Y.; Kan, Y. H.; Su , Z. M. J. Am. Chem. Soc. 2009, 131, 2967). In addition, new quantum chemical calculations of enthalpies of reaction (Δ(r)H°) at 298 K for B(10)H(14) and its lithium/fluoro derivatives highlight the changes in their thermodynamical aspects. The calculated enthalpies of lithiation reactions are -10.04, -11.29, and -13.18 kcal/mol for B(10)H(14), 6,9-F(2)B(10)H(12), and 2,4-F(2)B(10)H(12), respectively, demonstrating a higher probability of fluoro decaboranes for reaction with lithium. The obtained results not only explain the effect of position and number dependence of substituted fluoro atom(s) in B(10)H(14) and Li@B(10)H(14) but also elucidate a synergistic behavior to polarize a lithium excess electron for high NLO responses and vertical ionization potentials.


Chemistry: A European Journal | 2012

The Excess Electron in a Boron Nitride Nanotube: Pyramidal NBO Charge Distribution and Remarkable First Hyperpolarizability

Rong-Lin Zhong; Hong-Liang Xu; Shi-Ling Sun; Yong-Qing Qiu; Zhong-Min Su

The unusual properties of species with excess electrons have attracted a lot of interest in recent years due to their wide applications in many promising fields. In this work, we find that the excess electron could be effectively bound by the B atoms of boron nitride nanotube (BNNT), which is inverted pyramidally distributed from B-rich edge to N-rich edge. Further, Li@B-BNNT and Li@N-BNNT are designed by doping the Li atom to the two edges of BNNT, respectively. Because of the interaction between the Li atom and BNNT, the 2s valence electron of Li becomes a loosely bound excess electron. Interestingly, the distribution of the excess electron in Li@N-BNNT is more diffuse and pyramidal from B-rich edge to N-rich edge, which is fascinating compared with Li@B-BNNT. Correspondingly, the transition energy of Li@N-BNNT is 0.99 eV, which is obviously smaller than 2.65 eV of Li@B-BNNT. As a result, the first hyperpolarizability (3.40×10(4) a.u.) of Li@N-BNNT is dramatically larger (25 times) than 1.35×10(3) a.u. of Li@B-BNNT. Significantly, we find that the pyramidal distribution of the excess electron is the key factor to determine the first hyperpolarizability, which reveals useful information for scientists to develop new electro-optic applications of BNNTs.


Journal of Physical Chemistry Letters | 2015

Role of Excess Electrons in Nonlinear Optical Response

Rong-Lin Zhong; Hong-Liang Xu; Zhi-Ru Li; Zhong-Min Su

The excess electron is a kind of special anion with dispersivity, loosely bounding and with other fascinating features, which plays a pivotal role (promote to about 10(6) times in (H2O)3{e}) in the large first hyperpolarizabilities (β0) of dipole-bound electron clusters. This discovery opens a new perspective on the design of novel nonlinear optical (NLO) molecular materials for electro-optic device application. Significantly, doping alkali metal atoms in suitable complexants was proposed as an effective approach to obtain electride and alkalide molecules with excess electron and large NLO responses. The first hyperpolarizability is related to the characteristics of complexants and the excess electron binding states. Subsequently, a series of new strategies for enhancing NLO response and electronic stability of electride and alkalide molecules are exhibited by using various complexants. These strategies include not only the behaviors of pushed and pulled electron, size, shape, and number of coordination sites of complexants but also the number and spin state of excess electrons in these unusual NLO molecules.

Collaboration


Dive into the Hong-Liang Xu's collaboration.

Top Co-Authors

Avatar

Zhong-Min Su

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Shi-Ling Sun

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Rong-Lin Zhong

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Y. C. Liu

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Feng-Wei Gao

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Heng-Qing Wu

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Yong-Qing Qiu

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Gao

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Liang Zhao

Northeast Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge