Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong Soon Kang is active.

Publication


Featured researches published by Hong Soon Kang.


Immunity | 2008

T Helper 17 Lineage Differentiation Is Programmed by Orphan Nuclear Receptors RORα and RORγ

Xuexian O. Yang; Bhanu P. Pappu; Roza Nurieva; Askar M. Akimzhanov; Hong Soon Kang; Yeonseok Chung; Li Ma; Bhavin Shah; Athanasia D. Panopoulos; Kimberly S. Schluns; Stephanie S. Watowich; Qiang Tian; Anton M. Jetten; Chen Dong

T cell functional differentiation is mediated by lineage-specific transcription factors. T helper 17 (Th17) has been recently identified as a distinct Th lineage mediating tissue inflammation. Retinoic acid receptor-related orphan receptor gamma (ROR gamma) was shown to regulate Th17 differentiation; ROR gamma deficiency, however, did not completely abolish Th17 cytokine expression. Here, we report Th17 cells highly expressed another related nuclear receptor, ROR alpha, induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3. Overexpression of ROR alpha promoted Th17 differentiation, possibly through the conserved noncoding sequence 2 in Il17-Il17f locus. ROR alpha deficiency resulted in reduced IL-17 expression in vitro and in vivo. Furthermore, ROR alpha and ROR gamma coexpression synergistically led to greater Th17 differentiation. Double deficiencies in ROR alpha and ROR gamma globally impaired Th17 generation and completely protected mice against experimental autoimmune encephalomyelitis. Therefore, Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma.


Immunity | 2008

Molecular Antagonism and Plasticity of Regulatory and Inflammatory T Cell Programs

Xuexian O. Yang; Roza Nurieva; Gustavo J. Martinez; Hong Soon Kang; Yeonseok Chung; Bhanu P. Pappu; Bhavin Shah; Seon Hee Chang; Kimberly S. Schluns; Stephanie S. Watowich; Xin-Hua Feng; Anton M. Jetten; Chen Dong

Regulatory T (Treg) and T helper 17 (Th17) cells were recently proposed to be reciprocally regulated during differentiation. To understand the underlying mechanisms, we utilized a Th17 reporter mouse with a red fluorescent protein (RFP) sequence inserted into the interleukin-17F (IL-17F) gene. Using IL-17F-RFP together with a Foxp3 reporter, we found that the development of Th17 and Foxp3(+) Treg cells was associated in immune responses. Although TGF-beta receptor I signaling was required for both Foxp3 and IL-17 induction, SMAD4 was only involved in Foxp3 upregulation. Foxp3 inhibited Th17 differentiation by antagonizing the function of the transcription factors RORgammat and ROR*. In contrast, IL-6 overcame this suppressive effect of Foxp3 and, together with IL-1, induced genetic reprogramming in Foxp3(+) Treg cells. STAT3 regulated Foxp3 downregulation, whereas STAT3, RORgamma, and ROR* were required for IL-17 expression in Treg cells. Our data demonstrate molecular antagonism and plasticity of Treg and Th17 cell programs.


Immunity | 2008

Generation of T Follicular Helper Cells Is Mediated by Interleukin-21 but Independent of T Helper 1, 2, or 17 Cell Lineages

Roza Nurieva; Yeonseok Chung; Daehee Hwang; Xuexian O. Yang; Hong Soon Kang; Li Ma; Yi Hong Wang; Stephanie S. Watowich; Anton M. Jetten; Qiang Tian; Chen Dong

After activation, CD4(+) helper T (Th) cells differentiate into distinct effector subsets. Although chemokine (C-X-C motif) receptor 5-expressing T follicular helper (Tfh) cells are important in humoral immunity, their developmental regulation is unclear. Here we show that Tfh cells had a distinct gene expression profile and developed in vivo independently of the Th1 or Th2 cell lineages. Tfh cell generation was regulated by ICOS ligand (ICOSL) expressed on B cells and was dependent on interleukin-21 (IL-21), IL-6, and signal transducer and activator of transcription 3 (STAT3). However, unlike Th17 cells, differentiation of Tfh cells did not require transforming growth factor beta (TGF-beta) or Th17-specific orphan nuclear receptors RORalpha and RORgamma in vivo. Finally, naive T cells activated in vitro in the presence of IL-21 but not TGF-beta signaling preferentially acquired Tfh gene expression and promoted germinal-center reactions in vivo. This study thus demonstrates that Tfh is a distinct Th cell lineage.


Journal of Immunology | 2008

CCR6 Regulates the Migration of Inflammatory and Regulatory T Cells

Tomohide Yamazaki; Xuexian O. Yang; Yeonseok Chung; Atsushi Fukunaga; Roza Nurieva; Bhanu P. Pappu; Hong Soon Kang; Li Ma; Athanasia D. Panopoulos; Suzanne Craig; Stephanie S. Watowich; Anton M. Jetten; Qiang Tian; Chen Dong

Th17 and regulatory T (Treg) cells play opposite roles in autoimmune diseases. However, the mechanisms underlying their proper migration to inflammatory tissues are unclear. In this study, we report that these two T cell subsets both express CCR6. CCR6 expression in Th17 cells is regulated by TGF-β and requires two nuclear receptors, RORα and RORγ. Th17 cells also express the CCR6 ligand CCL20, which is induced synergistically by TGF-β and IL-6, which requires STAT3, RORγ and IL-21. Th17 cells, by producing CCL20, promote migration of Th17 and Treg cells in vitro in a CCR6-dependent manner. Lack of CCR6 in Th17 cells reduces the severity of experimental autoimmune encephalomyelitis and Th17 and Treg recruitment into inflammatory tissues. Similarly, CCR6 on Treg cells is also important for their recruitment into inflammatory tissues. Our data indicate an important role of CCR6 in Treg and Th17 cell migration.


Nature Medicine | 2012

Robust tumor immunity to melanoma mediated by interleukin-9–producing T cells

Rahul Purwar; Christoph Schlapbach; Sheng Xiao; Hong Soon Kang; Wassim Elyaman; Xiaodong Jiang; Anton M Jetten; Samia J. Khoury; Robert C. Fuhlbrigge; Vijay K. Kuchroo; Rachael A. Clark; Thomas S. Kupper

Interleukin-9 (IL-9) is a T cell cytokine that acts through a γC-family receptor on target cells and is associated with inflammation and allergy. We determined that T cells from mice deficient in the T helper type 17 (TH17) pathway genes encoding retinoid-related orphan receptor γ (ROR-γ) and IL-23 receptor (IL-23R) produced abundant IL-9, and we found substantial growth inhibition of B16F10 melanoma in these mice. IL-9–blocking antibodies reversed this tumor growth inhibition and enhanced tumor growth in wild-type (WT) mice. Il9r−/− mice showed accelerated tumor growth, and administration of recombinant IL-9 (rIL-9) to tumor-bearing WT and Rag1−/− mice inhibited melanoma as well as lung carcinoma growth. Adoptive transfer of tumor-antigen–specific TH9 cells into both WT and Rag1−/− mice suppressed melanoma growth; this effect was abrogated by treatment with neutralizing antibodies to IL-9. Exogenous rIL-9 inhibited tumor growth in Rag1−/− mice but not in mast-cell–deficient mice, suggesting that the targets of IL-9 in this setting include mast cells but not T or B cells. In addition, we found higher numbers of TH9 cells in normal human skin and blood compared to metastatic lesions of subjects with progressive stage IV melanoma. These results suggest a role for IL-9 in tumor immunity and offer insight into potential therapeutic strategies.


Molecular and Cellular Biology | 2009

Transcription Factor Glis3, a Novel Critical Player in the Regulation of Pancreatic β-Cell Development and Insulin Gene Expression

Hong Soon Kang; Yong Sik Kim; Gary ZeRuth; Ju Youn Beak; Kevin Gerrish; Gamze Kilic; Beatriz Sosa-Pineda; Jan Jensen; Julie F. Foley; Anton M. Jetten

ABSTRACT In this study, we report that the Krüppel-like zinc finger transcription factor Gli-similar 3 (Glis3) is induced during the secondary transition of pancreatic development, a stage of cell lineage specification and extensive patterning, and that Glis3zf/zf mutant mice develop neonatal diabetes, evidenced by hyperglycemia and hypoinsulinemia. The Glis3zf/zf mutant mouse pancreas shows a dramatic loss of β and δ cells, contrasting a smaller relative loss of α, PP, and ε cells. In addition, Glis3zf/zf mutant mice develop ductal cysts, while no significant changes were observed in acini. Gene expression profiling and immunofluorescent staining demonstrated that the expression of pancreatic hormones and several transcription factors important in endocrine cell development, including Ngn3, MafA, and Pdx1, were significantly decreased in the developing pancreata of Glis3zf/zf mutant mice. The population of pancreatic progenitors appears not to be greatly affected in Glis3zf/zf mutant mice; however, the number of neurogenin 3 (Ngn3)-positive endocrine cell progenitors is significantly reduced. Our study indicates that Glis3 plays a key role in cell lineage specification, particularly in the development of mature pancreatic β cells. In addition, we provide evidence that Glis3 regulates insulin gene expression through two Glis-binding sites in its proximal promoter, indicating that Glis3 also regulates β-cell function.


Frontiers in Endocrinology | 2013

Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity

Anton M. Jetten; Hong Soon Kang; Yukimasa Takeda

Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced expression of several genes regulating lipid synthesis, transport, and storage. Adipose tissue-associated inflammation, which plays a critical role in the development of insulin resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced infiltration of M1 macrophages and decreased expression of many proinflammatory genes. Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism that appears different from that in RORα deficiency. Recent studies indicated that RORs provide an important link between the circadian clock machinery and its regulation of metabolic genes and metabolic syndrome. As ligand-dependent transcription factors, RORs may provide novel therapeutic targets in the management of obesity and associated metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation, and insulin resistance.


Molecular Pharmacology | 2007

Identification of Oxysterol 7α-Hydroxylase (Cyp7b1) as a Novel Retinoid-Related Orphan Receptor α (RORα) (NR1F1) Target Gene and a Functional Cross-Talk between RORα and Liver X Receptor (NR1H3)

Taira Wada; Hong Soon Kang; Martin Angers; Haibiao Gong; Shikha Bhatia; Shaheen Khadem; Songrong Ren; Ewa Ellis; Stephen C. Strom; Anton M. Jetten; Wen Xie

The retinoid-related orphan receptors (RORs) and liver X receptors (LXRs) were postulated to have distinct functions. RORs play a role in tissue development and circadian rhythm, whereas LXRs are sterol sensors that affect lipid homeostasis. In this study, we revealed a novel function of RORα (NR1F1) in regulating the oxysterol 7α-hydroxylase (Cyp7b1), an enzyme critical for the homeostasis of cholesterol, bile acids, and oxysterols. The expression of Cyp7b1 gene was suppressed in the RORα null (RORαsg/sg) mice, suggesting RORα as a positive regulator of Cyp7b1. Promoter analysis established Cyp7b1 as a transcriptional target of RORα, and transfection of RORα induced the expression of endogenous Cyp7b1 in the liver. Interestingly, Cyp7b1 regulation seemed to be RORα-specific, because RORγ had little effect. Reporter gene analysis showed that the activation of Cyp7b1 gene promoter by RORα was suppressed by LXRα (NR1H3), whereas RORα inhibited both the constitutive and ligand-dependent activities of LXRα. The mutual suppression between RORα and LXR was supported by the in vivo observation that loss of RORα increased the expression of selected LXR target genes, leading to hepatic triglyceride accumulation. Likewise, mice deficient of LXR α and β isoforms showed activation of selected RORα target genes. Our results have revealed a novel role for RORα and a functional interplay between RORα and LXR in regulating endo- and xenobiotic genes, which may have broad implications in metabolic homeostasis.


Molecular and Cellular Biology | 2009

Glis3 Is Associated with Primary Cilia and Wwtr1/TAZ and Implicated in Polycystic Kidney Disease

Hong Soon Kang; Ju Youn Beak; Yong-Sik Kim; Ronald Herbert; Anton M. Jetten

ABSTRACT In this study, we describe the generation and partial characterization of Krüppel-like zinc finger protein Glis3 mutant (Glis3zf/zf) mice. These mice display abnormalities very similar to those of patients with neonatal diabetes and hypothyroidism syndrome, including the development of diabetes and polycystic kidney disease. We demonstrate that Glis3 localizes to the primary cilium, suggesting that Glis3 is part of a cilium-associated signaling pathway. Although Glis3zf/zf mice form normal primary cilia, renal cysts contain relatively fewer cells with a primary cilium. We further show that Glis3 interacts with the transcriptional modulator Wwtr1/TAZ, which itself has been implicated in glomerulocystic kidney disease. Wwtr1 recognizes a P/LPXY motif in the C terminus of Glis3 and enhances Glis3-mediated transcriptional activation, indicating that Wwtr1 functions as a coactivator of Glis3. Mutations in the P/LPXY motif abrogate the interaction with Wwtr1 and the transcriptional activity of Glis3, indicating that this motif is part of the transcription activation domain of Glis3. Our study demonstrates that dysfunction of Glis3 leads to the development of cystic renal disease, suggesting that Glis3 plays a critical role in maintaining normal renal functions. We propose that localization to the primary cilium and interaction with Wwtr1 are key elements of the Glis3 signaling pathway.


Diabetes | 2011

Nuclear Orphan Receptor TAK1/TR4-Deficient Mice Are Protected Against Obesity-Linked Inflammation, Hepatic Steatosis, and Insulin Resistance

Hong Soon Kang; Kyoko Okamoto; Yong-Sik Kim; Yukimasa Takeda; Carl D. Bortner; Huaixin Dang; Taira Wada; Wen Xie; Xiao-Ping Yang; Grace Liao; Anton M. Jetten

OBJECTIVE The nuclear receptor TAK1/TR4/NR2C2 is expressed in several tissues that are important in the control of energy homeostasis. In this study, we investigate whether TAK1 functions as a regulator of lipid and energy homeostasis and has a role in metabolic syndrome. RESEARCH DESIGN AND METHODS We generated TAK1-deficient (TAK1−/−) mice to study the function of TAK1 in the development of metabolic syndrome in aged mice and mice fed a high-fat diet (HFD). (Immuno)histochemical, biochemical, and gene expression profile analyses were performed to determine the effect of the loss of TAK1 expression on lipid homeostasis in liver and adipose tissues. In addition, insulin sensitivity, energy expenditure, and adipose-associated inflammation were compared in wild-type (WT) and TAK1−/− mice fed a HFD. RESULTS TAK1-deficient (TAK1−/−) mice are resistant to the development of age- and HFD-induced metabolic syndrome. Histo- and biochemical analyses showed significantly lower hepatic triglyceride levels and reduced lipid accumulation in adipose tissue in TAK1−/− mice compared with WT mice. Gene expression profiling analysis revealed that the expression of several genes encoding proteins involved in lipid uptake and triglyceride synthesis and storage, including Cidea, Cidec, Mogat1, and CD36, was greatly decreased in the liver and primary hepatocytes of TAK1−/− mice. Restoration of TAK1 expression in TAK1−/− hepatocytes induced expression of several lipogenic genes. Moreover, TAK1−/− mice exhibited reduced infiltration of inflammatory cells and expression of inflammatory genes in white adipose tissue, and were resistant to the development of glucose intolerance and insulin resistance. TAK1−/− mice consume more oxygen and produce more carbon dioxide than WT mice, suggesting increased energy expenditure. CONCLUSIONS Our data reveal that TAK1 plays a critical role in the regulation of energy and lipid homeostasis, and promotes the development of metabolic syndrome. TAK1 may provide a new therapeutic target in the management of obesity, diabetes, and liver steatosis.

Collaboration


Dive into the Hong Soon Kang's collaboration.

Top Co-Authors

Avatar

Anton M. Jetten

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ju Youn Beak

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yukimasa Takeda

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gary ZeRuth

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Grace Liao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kevin Gerrish

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kristin Lichti-Kaiser

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Roza Nurieva

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Stephanie S. Watowich

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xuexian O. Yang

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge