Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong-wei Wang is active.

Publication


Featured researches published by Hong-wei Wang.


Chemosphere | 2015

Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice.

Bian-hua Zhou; Jing Zhao; Jeffrey Liu; Jiliang Zhang; Jian Li; Hong-wei Wang

Fluoride (F), one of the most toxic environmental and industrial pollutants, is known to exert hepatotoxicity. The contribution of oxidative stress to the F tolerance of liver remains largely unknown. In this study, the morphological and ultrastructural characteristics of liver were observed using hematoxylin and eosin staining and transmission electron microscopy (TEM), respectively. Oxidative-stress participations was analysed and the mRNA expression levels of catalase (Cat), glutathione peroxidase 1 (GSH-Px1), nitric oxide synthase 2 (NOS2), and superoxide dismutase 1 (SOD1) were investigated by real-time PCR. Changes in liver-function parameters were also detected. Results showed that the reactive content of reactive oxygen species increased significantly, whereas SOD and GSH-Px activities, as well as total anti-oxidising capability (T-AOC), decreased significantly, with increased nitric oxide (NO) and malondialdehyde (MDA) contents in liver and serum after 70days of F treatment. The mRNA expression levels of Cat, GSH-Px1, and SOD were significantly downregulated, whereas NOS2 mRNA expression level was up upregulated, after F treatment for 70days. Light microscopy also revealed that hepatocytes were fused into pieces; cell boundaries were unclear, and nuclei were lightly stained. TEM further showed that hepatocytes were characterised by vague nuclear and mitochondrial membranes, dilated endoplasmic reticulum, and aggravated vacuolar degeneration. Activities of alanine transaminase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase, as well as the level of total bilirubin in serum increased. Overall, these results indicated that F interfered with the balance of antioxidase activity and morphological changes in liver, which were involved in mouse liver dysfunction.


Toxicology and Industrial Health | 2009

Fluoride-induced thyroid dysfunction in rats: roles of dietary protein and calcium level:

Hong-wei Wang; Z Yang; Bian-hua Zhou; H Gao; X Yan; Jundong Wang

To assess the roles of dietary protein (Pr) and calcium (Ca) level associated with excessive fluoride (F) intake and the impact of dietary Pr, Ca, and F on thyroid function, 144 30-day-old Wistar albino rats were randomly allotted to six groups of 24 (female:male = 1:1). The six groups were fed (1) a normal control (NC) diet (17.92% Pr, 0.85% Ca = NC group); (2) the NC diet and high F (338 mg NaF [=150 mg F ion]/L in their drinking water = NC+F group); (3) low Pr and low Ca diet (10.01% Pr, 0.24% Ca = LPrLCa group); (4) low Pr and low Ca diet plus high F = LPrLCa+F group; (5) high Pr and low Ca diet plus high F (25.52% Pr, 0.25% Ca = HPrLCa+F group); and (6) low Pr and high Ca diet plus high F (10.60% Pr, 1.93% Ca = LPrHCa+F group). The areas of thyroid follicles were determined by Image-Proplus 5.1, and triiodothyronine (T3), free T3 (FT3), thyroxine (T4), and free T4 (FT4) levels in serum were measured by radioimmunoassay. The histopathological study revealed obviously flatted follicular epithelia cells and hyperplastic nodules, consisting of thyroid parafollicular cells that appeared by excessive F ingestion, on the 120th day. Pr or Ca supplementation reverses the F-induced damage in malnutrition. The serum T3, FT3, T4, and FT4 levels in the NC+F group were significantly decreased and significantly increased in the LPrLCa+F group. Thus, excessive F administration induces thyroid dysfunction in rats; dietary Pr and Ca level play key roles in F-induced thyroid dysfunction.


Veterinary Parasitology | 2010

Effects of diclazuril on apoptosis and mitochondrial transmembrane potential in second-generation merozoites of Eimeria tenella.

Bianhua Zhou; Hong-wei Wang; Feiqun Xue; Xiaoyang Wang; Chenzhong Fei; Mi Wang; Tao Zhang; Xiujuan Yao; Peiyi He

Diclazuril, a benzeneacetonitrile anticoccidial agent, has potent activity against various stages of Eimeria tenella (E. tenella). To study the effects of diclazuril on E. tenella merozoites, purified second-generation merozoites were obtained from infected chicken caecal tissue at 120h after inoculation by a combination of enzymatic digestion, centrifugation, erythrocytes disruption and percoll density gradient centrifugation. Ultrastructural changes were monitored by transmission electron microscopy (TEM). Apoptosis and mitochondrial transmembrane potential were determined by flow cytometry (FCM). The results showed that diclazuril induced ultrastructural changes and significantly increased the ratio of early apoptosis by 180.75% (P<0.01) and late apoptosis/necrosis by 86.82% (P<0.05) in second-generation merozoites, respectively. Compared with the infected/control group, the ratio of second-generation merozoites that lost mitochondrial function was increased by 45.04% (P<0.01) in the infected/treatment group. In conclusion, diclazuril induced morphological changes and attenuated the activity of mitochondrial transmembrane potential of merozoites, which is involved in mitochondrial-depended apoptosis in second-generation merozoites of E. tenella.


Experimental Parasitology | 2010

Eimeria tenella: effects of diclazuril treatment on microneme genes expression in second-generation merozoites and pathological changes of caeca in parasitized chickens.

Bian-hua Zhou; Hong-wei Wang; Xiaoyang Wang; Lifang Zhang; Keyu Zhang; Feiqun Xue

The effects of diclazuril on mRNA expression levels of invasion-related microneme genes were examined in second-generation merozoites of Eimeria tenella (E. tenella) by quantitative real-time (QRT) PCR. Diclazruil treatment of infected chickens significantly decreased the number of second-generation merozoites by 65.13%, and resulted in downregulation of EtMIC genes: EtMIC1 by 65.63%, EtMIC2 by 64.12%, EtMIC3 by 56.82%, EtMIC4 by 73.48%, and EtMIC5 by 78.17%. SEM images of caecum tissue from uninfected chickens showed regular intestinal villus structure. In infected chickens, a distinct loss of the superficial epithelium, with a flattened mucosa and large-area necrosis and anabrosis, was evident. In diclazruil-treated chickens, a decrease in merozoite number and a visibly improved appearance of the caeca were noted. These improvements appeared to be mediated in part by downregulation of the expression of invasion-related EtMIC genes in response to diclazuril.


Chemosphere | 2017

Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice

Hong-wei Wang; Wen-peng Zhao; Jing Liu; Pan-pan Tan; Cai Zhang; Bian-hua Zhou

The present study was conducted to investigate the mechanisms of excessive-fluoride-induced reduction of oocyte development potential in mice. The development morphology of oocyte and the changes of pathomorphology in ovary were observed. The protein expression levels of apoptosis factors, including Bax, Bcl-2, casepase-3, casepase-9 and cytochrome c, and the mRNA expression levels of antioxidant enzymes, including SOD1, GSH-Px1, CAT and inducible nitric oxide synthase were measured by Western blot and real-time PCR, respectively. DNA damage in the ovary was analysed by single cell gel electrophoresis and TUNEL staining. Results indicated that the structure and function of ovarian cells were seriously damaged, followed, the development potential of oocyte was reduced by excessive fluoride. The expression levels of apoptosis factors were up-regulated and antioxidant enzymes were significantly down-regulated. Meanwhile, the contents of ROS, MDA, NO and iNOS were significantly increased. Whereas, the activities of SOD1, GSH-Px1 and CAT was significantly decreased compared with the control group. Simultaneously, the results of DNA analysis indicated that the tail length and tailing ratio of ovarian cells were significantly increased in the fluoride group. In summary, the results provided compelling evidence that excessive fluoride intake can reduce the development potential of oocyte by inducing oxidative stress and apoptosis in the ovary of female mice.


Toxicology and Industrial Health | 2016

Reproductive toxicity in male mice after exposure to high molybdenum and low copper concentrations

Hong-wei Wang; Bian-hua Zhou; Sen Zhang; Hong-wei Guo; Jiliang Zhang; Jing Zhao; Er-jie Tian

To evaluate the effects of dietary high molybdenum (HMo) and low copper (LCu) concentrations on reproductive toxicity of male mice, 80 mice were divided into 4 groups of 20. These groups were fed with the following: (1) normal control (NC) diet (NC group); (2) NC and HMo diets (HMo group); (3) LCu diet (LCu group); and (4) HMo and LCu diets (HMoLCu group). On the 50th and 100th day, superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) were analyzed to determine oxidative stress states. Morphological changes in testicular tissue were evaluated with hematoxylin and eosin staining and ultrastructural changes were monitored by transmission electron microscopy. The results showed that administration of HMo, LCu, and HMoLCu not only decreased sperm density and motility but also increased the rate of teratosperm occurrence. A significant increase in MDA content and a decrease in SOD, GSH-Px, and T-AOC contents were observed in LCu, HMo, and HMoLCu groups. Testicular tissues and cells of mice were damaged by HMo and the damages were more serious in the case of Cu deficiency. Exposure to HMo adversely affected the reproductive system of male mice, and dietary LCu plays key roles in HMo-induced reproductive toxicity.


Korean Journal of Parasitology | 2015

Effect of Diclazuril on the Bursa of Fabricius Morphology and SIgA Expression in Chickens Infected with Eimeria tenella

Bian-hua Zhou; Li-li Liu; Jeffrey Liu; Fu-wei Yuan; Er-jie Tian; Hong-wei Wang

The effects of diclazuril on the bursa of Fabricius (BF) structure and secretory IgA (SIgA) expression in chickens infected with Eimeria tenella were examined. The morphology of the BF was observed by hematoxylin and eosin staining, while ultrastructural changes were monitored by transmission electron microscopy. E. tenella infection caused the BF cell volumes to decrease, irregularly arranged, as well as, enlargement of the intercellular space. Diclazuril treatment alleviated the physical signs of damages associated with E. tenella infection. The SIgA expression in BF was analyzed by immunohistochemistry technique. The SIgA expression increased significantly by 350.4% (P<0.01) after E. tenella infection compared to the normal control group. With the treatment of diclazuril, the SIgA was relatively fewer in the cortex, and the expression level was significantly decreased by 46.7% (P<0.01) compared with the infected and untreated group. In conclusion, E. tenella infection in chickens induced obvious harmful changes in BF morphological structure and stimulated the expression of SIgA in the BF. Diclazuril treatment effectively alleviated the morphological changes. This result demonstrates a method to develop an immunological strategy in coccidiosis control.


Parasitology Research | 2014

Effect of diclazuril on intestinal morphology and SIgA expression in chicken infected with Eimeria tenella

Er-jie Tian; Bian-hua Zhou; Xue-ying Wang; Jing Zhao; Wen Deng; Hong-wei Wang

Secretory immunoglobulin A (SIgA), as a vital actor involving in the mucosal immunity, plays a key role in defending a variety of pathogenic infections, such as bacteria, viruses and parasites. Eimeria tenella is an obligate intracellular apicomplexan parasite contacting with the digestive tract mucosa and specially parasitizes chicken caecum, causing a severe form of coccidiosis. Coccidiosis is currently mainly controlled using chemotherapeutic agents. Diclazuril, a classic coccidiostat, was used widely in the poultry industry. Because of the rising problem of drug resistance, it is therefore crucial to understand the pattern of the SIgA expression in the action of diclazuril against E. tenella. In this study, the intestinal morphology in the caecum was analyzed by haematoxylin-eosin (HE) staining, and the SIgA expression was examined by immunohistochemical technique. At the same time, the duodenum, jejunum and ileum tissues have also been evaluated. HE staining results showed that E. tenella infection caused severe damage characterized by structural disorder, haemorrhage, inflammatory cell infiltration, serous and fibrinous exudation in chicken caecum and invisible damage in the duodenum, jejunum and ileum. With the treatment of diclazuril, the damage in the caecum was alleviated obviously. Immunohistochemical analysis demonstrated that the SIgA level in the infected group was increased in the duodenum (p < 0.05), jejunum and ileum, respectively, but decreased (p < 0.01) in the caecum, compared with the control group. Interestingly, the SIgA level was decreased in the duodenum (p < 0.05), jejunum and ileum but increased (p < 0.05) in the caecum in the infected/diclazuril group in comparison to the infected group. The results showed that diclazuril effectively alleviated the damage in the caecum induced by E. tenella and provided a cure for coccidiosis by improving the immune function in chickens.


Chemosphere | 2018

Ca 2+ metabolic disorder and abnormal expression of cardiac troponin involved in fluoride-induced cardiomyocyte damage

Hong-wei Wang; Jing Liu; Jing Zhao; Lin Lin; Wen-peng Zhao; Pan-pan Tan; Wei-shun Tian; Bian-hua Zhou

Our previous study indicated that excessive fluoride (F) induces ATP5J and ATP5H proactive expression by interfering cardiomyocyte mitochondrial dysfunction in mice. This study aimed to investigate underlying mechanisms of F¯ induced damage to cardiomyocytes. A total of 100 mg/L F¯ was added to distilled water to treat Kunming mice for 70 days. Pathological and morphological changes in myocardial tissues were observed under transmission electron microscope and light microscope. Content of ATP and ATP enzyme distributed in cardiomyocytes were determined by fluorescence and ATP enzyme staining. Expression levels of troponin (Tn) C, TnI, TnT and tropomyosin (TPM) were measured by immunofluorescence, western blot, and real-time polymerase chain reaction. Contents of Ca2+ in blood, myocardial cells and faeces were also detected by confocal microscopy and ethylenediaminetetraacetic acid. Using 100 mg/L F¯ resulted in nuclaer enrichment, the myocardial fibre breakage and mitochondrial lysis. Following mitochondrial structure damage, contents of ATP and ATP enzyme significantly decreased in the fluoride group. Expression levels of TnT and TnI were significantly down-regulated, whereas that of TPM was up-regulated. Content of Ca2+ in cardiomyocytes of fluoride group visibly increased. Interestingly, contents of Ca2+ in blood and faeces decreased. These findings reveal that excessive F ingestion induces Ca2+ metabolic disorder, and an abnormal expression of cardiac Tn are involved in F-induced cardiomyocyte damage.


Chemosphere | 2018

JNK/STAT signalling pathway is involved in fluoride-induced follicular developmental dysplasia in female mice

Wen-peng Zhao; Hong-wei Wang; Jing Liu; Pan-pan Tan; Lin Lin; Bian-hua Zhou

Excessive fluoride (F) intake decreases the development of potential oocytes by inducing oxidative stress and apoptosis in female mice in our previous study. This study aims to investigate the underlying mechanisms of F-induced follicular developmental dysplasia. Pathomorphological changes in the ovary tissues were observed under light and transmission electron microscopes. DNA damage and proliferation in granulosa cells were analysed by TUNEL staining and BrdU measurement. The protein expression of cell proliferation related regulatory factors including JNK, STAT3, STAT5, CDK2, CDK4, PCNA and Ki67 in the ovary tissues was measured by immunohistochemistry and Western blot analyses. Results indicated that the structure of granulosa cells in the ovary was seriously damaged by excessive F, evident by the swollen endoplasmic reticulum, mitochondria with vacuoles and nucleus shrinkage. F treatment also considerably enhanced the apoptosis and inhibited the proliferation of granulosa cells. The number of granulosa cells around the oocyte decreased after F treatment. The expression levels of STAT3, CDK2, CDK4 and Ki67 in the ovary tissues were up-regulated, and STAT5 and PCNA did not change significantly after F treatment, whereas JNK expression was down-regulated with increasing F dose. In summary, changes in the expression levels of JNK, STAT3, STAT5, CDK2, CDK4, PCNA and Ki67 in the JNK/STAT signalling pathway are involved in F-induced follicular dysplasia in the ovary.

Collaboration


Dive into the Hong-wei Wang's collaboration.

Top Co-Authors

Avatar

Bian-hua Zhou

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wen-peng Zhao

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jing Liu

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jing Zhao

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Pan-pan Tan

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Er-jie Tian

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jiliang Zhang

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Lin Lin

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jian Li

Henan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jicang Wang

Henan University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge