Hong-Ye Zhao
Yunnan Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hong-Ye Zhao.
Science | 2017
Dong Niu; Hong-Jiang Wei; Lin Lin; Haydy George; Tao Wang; I-Hsiu Lee; Hong-Ye Zhao; Yong Wang; Yinan Kan; Ellen Shrock; Emal Lesha; Gang Wang; Yonglun Luo; Yubo Qing; Deling Jiao; Heng Zhao; Xiaoyang Zhou; Shouqi Wang; Hong Wei; Marc Güell; George M. Church; Luhan Yang
Taking the PERVs out of pigs With the severe shortage of organs needed for transplants, xenotransplantation (transplantation of nonhuman organs to humans) offers an alternative source. Some pig organs have similar size and function to those of humans. The challenge is that the pig genome harbors porcine endogenous retroviruses (PERVs) that can potentially pass to humans with possibly damaging consequences. Niu et al. generated pigs in which all copies of PERVs were inactivated by CRISPR-Cas9 genome engineering (see the Perspective by Denner). Not only does this work provide insights into PERV activity, but it also opens the door to a safer source of organs and tissues for pig-to-human xenotransplantation. Science, this issue p. 1303; see also p. 1238 Cloned pigs can be reared that lack all porcine endogenous retroviruses. Xenotransplantation is a promising strategy to alleviate the shortage of organs for human transplantation. In addition to the concerns about pig-to-human immunological compatibility, the risk of cross-species transmission of porcine endogenous retroviruses (PERVs) has impeded the clinical application of this approach. We previously demonstrated the feasibility of inactivating PERV activity in an immortalized pig cell line. We now confirm that PERVs infect human cells, and we observe the horizontal transfer of PERVs among human cells. Using CRISPR-Cas9, we inactivated all of the PERVs in a porcine primary cell line and generated PERV-inactivated pigs via somatic cell nuclear transfer. Our study highlights the value of PERV inactivation to prevent cross-species viral transmission and demonstrates the successful production of PERV-inactivated animals to address the safety concern in clinical xenotransplantation.
PLOS ONE | 2013
Hong-Jiang Wei; Yubo Qing; Weirong Pan; Hong-Ye Zhao; Honghui Li; Wenmin Cheng; Lu Zhao; Chengsheng Xu; Hong Li; Si Li; Lei Ye; Taiyun Wei; Xiaobing Li; Guowen Fu; Wengui Li; Jige Xin; Yangzhi Zeng
Somatic cell nuclear transfer (SCNT) is an important method of breeding quality varieties, expanding groups, and preserving endangered species. However, the viability of SCNT embryos is poor, and the cloned rate of animal production is low in pig. This study aims to investigate the gene function and establish a disease model of Banna miniature inbred pig. SCNT with donor cells derived from fetal, newborn, and adult fibroblasts was performed, and the cloning efficiencies among the donor cells were compared. The results showed that the cleavage and blastocyst formation rates did not significantly differ between the reconstructed embryos derived from the fetal (74.3% and 27.4%) and newborn (76.4% and 21.8%) fibroblasts of the Banna miniature inbred pig (P>0.05). However, both fetal and newborn fibroblast groups showed significantly higher rates than the adult fibroblast group (61.9% and 13.0%; P<0.05). The pregnancy rates of the recipients in the fetal and newborn fibroblast groups (60% and 80%, respectively) were higher than those in the adult fibroblast group. Eight, three, and one cloned piglet were obtained from reconstructed embryos of the fetal, newborn, and adult fibroblasts, respectively. Microsatellite analyses results indicated that the genotypes of all cloning piglets were identical to their donor cells and that the genetic homozygosity of the Banna miniature inbred pig was higher than those of the recipients. Therefore, the offspring was successfully cloned using the fetal, newborn, and adult fibroblasts of Banna miniature inbred pig as donor cells.
Journal of Translational Medicine | 2017
Youfeng Shen; Kaixiang Xu; Zaimei Yuan; Jianxiong Guo; Heng Zhao; Xuezeng Zhang; Lu Zhao; Yubo Qing; Honghui Li; Weirong Pan; Baoyu Jia; Hong-Ye Zhao; Hong-Jiang Wei
BackgroundPigs have many features that make them attractive as biomedical models for various diseases, including cancer. P53 is an important tumor suppressor gene that exerts a central role in protecting cells from oncogenic transformation and is mutated in a large number of human cancers. P53 mutations occur in almost every type of tumor and in over 50% of all tumors. In a recent publication, pigs with a mutated P53 gene were generated that resulted in lymphoma and renal and osteogenic tumors. However, approximately 80% of human tumors have dysfunctional P53. A P53-deficient pig model is still required to elucidate.MethodsTranscription activator-like effector nucleases (TALENs) were designed to target porcine P53 exon 4. The targeting activity was evaluated using a luciferase SSA recombination assay. P53 biallelic knockout (KO) cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs followed by electroporation with TALENs plasmids. One cell line was selected as the donor cell line for somatic cell nuclear transfer (SCNT) for the generation of P53 KO pigs. P53 KO stillborn fetuses and living piglets were obtained. Gene typing of the collected cloned individuals was performed by T7EI assay and sequencing. Fibroblast cells from Diannan miniature piglets with a P53 biallelic knockout or wild type were analyzed for the P53 response to doxorubicin treatment by confocal microscopy and western blotting.ResultsThe luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 55.35-fold higher than those of the control. Eight cell lines (8/19) were mutated for P53, and five of them were biallelic knockouts. One of the biallelic knockout cell lines was selected as nuclear donor cells for SCNT. The cloned embryos were transferred into five recipient gilts, three of them becoming pregnant. Five live fetuses were obtained from one surrogate by caesarean section after 38 days of gestation for genotyping. Finally, six live piglets and one stillborn piglet were collected from two recipients by caesarean section. Sequencing analyses of the target site confirmed the P53 biallelic knockout in all fetuses and piglets, consistent with the genotype of the donor cells. The qPCR analysis showed that the expression of the P53 mRNA had significant reduction in various tissues of the knockout piglets. Furthermore, confocal microscopy and western blotting analyses demonstrated that the fibroblast cells of Diannan miniature piglets with a P53 biallelic knockout were defective in mediating DNA damage when incubated with doxorubicin.ConclusionTALENs combined with SCNT was successfully used to generate P53 KO Diannan miniature pigs. Although these genetically engineered Diannan miniature pigs had no tumorigenic signs, the P53 gene was dysfunctional. We believe that these pigs will provide powerful new resources for preclinical oncology and basic cancer research.
Frontiers in Pharmacology | 2017
Chaoxiang Lv; Hao Qu; Wanyun Zhu; Kaixiang Xu; Anyong Xu; Baoyu Jia; Yubo Qing; Honghui Li; Hong-Jiang Wei; Hong-Ye Zhao
Paclitaxel (PTX) is a natural alkaloid isolated from the bark of a tree, Taxus brevifolia, and is currently used to treat a variety of tumors. Recently, it has been found that low-dose PTX is a promising treatment for some cancers, presenting few side effects. However, antitumor mechanisms of low-dose PTX (<1 nM) have rarely been illuminated. Here we report a new antitumor mechanism of low-dose PTX in colorectal carcinoma cells. We treated colorectal carcinoma HCT116 cells with PTX at 0.1 and 0.3 nM for 0, 1, 2, or 3 days, and found that low-dose PTX inhibits cell growth without altering cell morphology and cell cycle. There was a significant decrease of pH in culture media with 0.3 nM PTX for 3 days. Also, lactate production was significantly increased in a dose- and time-dependent manner. Furthermore, expression of glutaminolysis-related genes GLS, SLC7A11 and SLC1A5 were significantly decreased in the colorectal carcinoma cells treated with low-dose PTX. Meanwhile, protein expression levels of p53 and p21 increased significantly in colorectal carcinoma cells so treated. In summary, low-dose PTX down-regulated glutaminolysis-related genes and increased their lactate production, resulting in decreased pH of tumor microenvironments and inhibition of tumor cell growth. Up-regulation of p53 and p21 in colorectal carcinoma cells treated with low-dose PTX also contributed to inhibition of tumor cell growth.
Scientific Reports | 2016
Honghui Li; Gui Wang; Zhiqiang Hao; Guozhong Zhang; Yubo Qing; Shuanghui Liu; Lili Qing; Weirong Pan; Lei Chen; Guichun Liu; Ruoping Zhao; Baoyu Jia; Luyao Zeng; Jianxiong Guo; Lixiao Zhao; Heng Zhao; Chaoxiang Lv; Kaixiang Xu; Wenmin Cheng; Hushan Li; Hong-Ye Zhao; Wen Wang; Hong-Jiang Wei
Transgenic sheep can be used to achieve genetic improvements in breeds and as an important large-animal model for biomedical research. In this study, we generated a TALEN plasmid specific for ovine MSTN and transfected it into fetal fibroblast cells of STH sheep. MSTN biallelic-KO somatic cells were selected as nuclear donor cells for SCNT. In total, cloned embryos were transferred into 37 recipient gilts, 28 (75.7%) becoming pregnant and 15 delivering, resulting in 23 lambs, 12 of which were alive. Mutations in the lambs were verified via sequencing and T7EI assay, and the gene mutation site was consistent with that in the donor cells. Off-target analysis was performed, and no off-target mutations were detected. MSTN KO affected the mRNA expression of MSTN relative genes. The growth curve for the resulting sheep suggested that MSTN KO caused a remarkable increase in body weight compared with those of wild-type sheep. Histological analyses revealed that MSTN KO resulted in muscle fiber hypertrophy. These findings demonstrate the successful generation of MSTN biallelic-KO STH sheep via gene editing in somatic cells using TALEN technology and SCNT. These MSTN mutant sheep developed and grew normally, and exhibited increased body weight and muscle growth.
PLOS Biology | 2018
Junchen Chen; Weiqi Zeng; Weirong Pan; Cong Peng; Jianglin Zhang; Juan Su; Weihu Long; Heng Zhao; Xiaoxia Zuo; Xiaoyun Xie; Jing Wu; Ling Nie; Hong-Ye Zhao; Hong-Jiang Wei; Xiang Chen
Leptin is a well-known adipokine that plays a critical role in immune responses. To further explore the immunological roles of leptin, we developed a transgenic leptin pig controlled by the pig leptin (pleptin) promoter to overexpress leptin. Symptoms typically associated with systemic lupus erythematosus (SLE) were evident in this transgenic pig strain, including anemia, leukopenia, and thrombocytopenia as well as kidney and liver impairment. Histologically, there were increased immunoglobulin G (IgG) levels, elevated antiplatelet antibody (APA) levels, and deposition of immune complexes in the kidney and liver. In addition, anti-double-stranded DNA antibodies (dsDNAs), antinuclear antibodies (ANAs), and antinucleosome antibodies (ANuAs) were all significantly increased in serum immunological examinations. These findings were also accompanied by repression of the regulatory T cell (Treg) ratio. Significantly, glucocorticoid experimental therapies partially relieved the autoimmune responses and bleeding symptoms observed in these transgenic leptin pigs. Together, these results indicate that leptin plays a critical role in the development of autoimmune disorders and demonstrate that our transgenic leptin pigs can act as a valuable model of SLE.
Animal Cells and Systems | 2017
Wanyun Zhu; Hao Qu; Kaixiang Xu; Baoyu Jia; Haifeng Li; Yimin Du; Guangming Liu; Hong-Jiang Wei; Hong-Ye Zhao
ABSTRACT Breast cancer is a heterogeneous disease with distinct subtypes that have made targeted therapy of breast cancer challenging. Previous studies have demonstrated that an altered autophagy capacity can influence the development of breast cancer. However, the molecular differences in starvation-induced autophagic responses in MDA-MB-231 and MCF-7 cells have not been fully elucidated. In this study, we found that an increase of LC3B-II protein expression level and a decrease of the p62 protein expression level in both cells treated by Earle’s balanced salt solution. Meanwhile, we observed an increase of autophagosome using transmission electron microscopy and an enhancement in the green fluorescence intensity of LC3B protein by confocal microscopy. Furthermore, we detected the expression of 13 autophagy-related (ATG) genes and 11 autophagy signaling pathway-related genes using qPCR. Among 13 ATG genes, we found that 6 genes were up-regulated in treated MDA-MB-231 cells, while 4 genes were up-regulated and 1 gene was down-regulated in treated MCF-7 cells. In addition, among 11 autophagy signaling pathway-related genes, 7 genes were up-regulated in treated MDA-MB-231 cells, while 5 genes were up-regulated and 1 gene was down-regulated in treated MCF-7 cells. These findings suggest that the autophagic response to starvation was different in the two treated cell lines, which will contribute to further study on the molecular mechanism of starvation-induced autophagy and improve the targeted therapy of breast cancer.
International Journal of Molecular Sciences | 2016
Honghao Yu; Heng Zhao; Yubo Qing; Weirong Pan; Baoyu Jia; Hong-Ye Zhao; Xingxu Huang; Hong-Jiang Wei
Reproductive Biology and Endocrinology | 2016
Wenmin Cheng; Heng Zhao; Honghao Yu; Jige Xin; Jia Wang; Luyao Zeng; Zaimei Yuan; Yubo Qing; Honghui Li; Baoyu Jia; Cejun Yang; Youfeng Shen; Lu Zhao; Weirong Pan; Hong-Ye Zhao; Wei Wang; Hong-Jiang Wei
Archive | 2010
Hong-Jiang Wei; Hong-Ye Zhao; Weirong Pan; Guanxiong Chen