Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong-Yu Ou is active.

Publication


Featured researches published by Hong-Yu Ou.


Nucleic Acids Research | 2011

TADB: a web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea

Yucheng Shao; Ewan M. Harrison; Dexi Bi; Cui Tai; Xinyi He; Hong-Yu Ou; Kumar Rajakumar; Zixin Deng

TADB (http://bioinfo-mml.sjtu.edu.cn/TADB/) is an integrated database that provides comprehensive information about Type 2 toxin–antitoxin (TA) loci, genetic features that are richly distributed throughout bacterial and archaeal genomes. Two-gene and much less frequently three-gene Type 2 TA loci code for cognate partners that have been hypothesized or demonstrated to play key roles in stress response, bacterial physiology and stabilization of horizontally acquired genetic elements. TADB offers a unique compilation of both predicted and experimentally supported Type 2 TA loci-relevant data and currently contains 10 753 Type 2 TA gene pairs identified within 1240 prokaryotic genomes, and details of over 240 directly relevant scientific publications. A broad range of similarity search, sequence alignment, genome context browser and phylogenetic tools are readily accessible via TADB. We propose that TADB will facilitate efficient, multi-disciplinary and innovative exploration of the bacteria and archaea Type 2 TA space, better defining presently recognized TA-related phenomena and potentially even leading to yet-to-be envisaged frontiers. The TADB database, envisaged as a one-stop shop for Type 2 TA-related research, will be maintained, updated and improved regularly to ensure its ongoing maximum utility to the research community.


Nucleic Acids Research | 2012

ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria

Dexi Bi; Zhen Xu; Ewan M. Harrison; Cui Tai; Yiqing Wei; Xinyi He; Shiru Jia; Zixin Deng; Kumar Rajakumar; Hong-Yu Ou

ICEberg (http://db-mml.sjtu.edu.cn/ICEberg/) is an integrated database that provides comprehensive information about integrative and conjugative elements (ICEs) found in bacteria. ICEs are conjugative self-transmissible elements that can integrate into and excise from a host chromosome. An ICE contains three typical modules, integration and excision, conjugation, and regulation modules, that collectively promote vertical inheritance and periodic lateral gene flow. Many ICEs carry likely virulence determinants, antibiotic-resistant factors and/or genes coding for other beneficial traits. ICEberg offers a unique, highly organized, readily explorable archive of both predicted and experimentally supported ICE-relevant data. It currently contains details of 428 ICEs found in representatives of 124 bacterial species, and a collection of >400 directly related references. A broad range of similarity search, sequence alignment, genome context browser, phylogenetic and other functional analysis tools are readily accessible via ICEberg. We propose that ICEberg will facilitate efficient, multi-disciplinary and innovative exploration of bacterial ICEs and be of particular interest to researchers in the broad fields of prokaryotic evolution, pathogenesis, biotechnology and metabolism. The ICEberg database will be maintained, updated and improved regularly to ensure its ongoing maximum utility to the research community.


Journal of Bacteriology | 2012

Complete Genome Sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a Multidrug-Resistant Strain Isolated from Human Sputum

Pinglei Liu; Peng Li; Xiaofei Jiang; Dexi Bi; Yingzhou Xie; Cui Tai; Zixin Deng; Kumar Rajakumar; Hong-Yu Ou

Klebsiella pneumoniae is an important pathogen commonly associated with opportunistic infections. Here we report the genome sequence of a strain, HS11286, isolated from human sputum in 2011 in Shanghai, China. It contains one chromosome (5.3 Mb), three multidrug resistance plasmids (∼110 kb), including a carbapenemase producer, and three small plasmids (∼3 kb).


Nucleic Acids Research | 2007

MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands

Hong-Yu Ou; Xinyi He; Ewan M. Harrison; Bridget R. Kulasekara; Ali Bin Thani; Aras Kadioglu; Stephen Lory; Jay C. D. Hinton; Michael R. Barer; Zixin Deng; Kumar Rajakumar

MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or ‘mobile genome’ (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate ‘inferred contigs’ produced by merging adjacent genes classified as ‘present’. Collectively these ‘fragments’ represent a hypothetical ‘microarray-visualized genome (MVG)’. ArrayOme permits recognition of discordances between physical genome and MVG sizes, thereby enabling identification of strains rich in microarray-elusive novel genes. Individual tRNAcc tools facilitate automated identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites and other integration hotspots in closely related sequenced genomes. Accessory tools facilitate design of hotspot-flanking primers for in silico and/or wet-science-based interrogation of cognate loci in unsequenced strains and analysis of islands for features suggestive of foreign origins; island-specific and genome-contextual features are tabulated and represented in schematic and graphical forms. To date we have used MobilomeFINDER to analyse several Enterobacteriaceae, Pseudomonas aeruginosa and Streptococcus suis genomes. MobilomeFINDER enables high-throughput island identification and characterization through increased exploitation of emerging sequence data and PCR-based profiling of unsequenced test strains; subsequent targeted yeast recombination-based capture permits full-length sequencing and detailed functional studies of novel genomic islands.


Nucleic Acids Research | 2010

mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes

Yucheng Shao; Xinyi He; Ewan M. Harrison; Cui Tai; Hong-Yu Ou; Kumar Rajakumar; Zixin Deng

mGenomeSubtractor performs an mpiBLAST-based comparison of reference bacterial genomes against multiple user-selected genomes for investigation of strain variable accessory regions. With parallel computing architecture, mGenomeSubtractor is able to run rapid BLAST searches of the segmented reference genome against multiple subject genomes at the DNA or amino acid level within a minute. In addition to comparison of protein coding sequences, the highly flexible sliding window-based genome fragmentation approach offered can be used to identify short unique sequences within or between genes. mGenomeSubtractor provides powerful schematic outputs for exploration of identified core and accessory regions, including searches against databases of mobile genetic elements, virulence factors or bacterial essential genes, examination of G+C content and binucleotide distribution bias, and integrated primer design tools. mGenomeSubtractor also allows for the ready definition of species-specific gene pools based on available genomes. Pan-genomic arrays can be easily developed using the efficient oligonucleotide design tool. This simple high-throughput in silico ‘subtractive hybridization’ analytical tool will support the rapidly escalating number of comparative bacterial genomics studies aimed at defining genomic biomarkers of evolutionary lineage, phenotype, pathotype, environmental adaptation and/or disease-association of diverse bacterial species. mGenomeSubtractor is freely available to all users without any login requirement at: http://bioinfo-mml.sjtu.edu.cn/mGS/.


Molecular Microbiology | 2007

Analysis of a genomic island housing genes for DNA S-modification system in Streptomyces lividans 66 and its counterparts in other distantly related bacteria.

Xinyi He; Hong-Yu Ou; Qing Yu; Xiufen Zhou; Jun Wu; Jingdan Liang; Wei Zhang; Kumar Rajakumar; Zixin Deng

The complete sequence (92 770 bp) of a genomic island (GI) named SLG from Streptomyces lividans 66, encoding a novel DNA S‐modification system (dnd), was determined. Its overall G+C content was 67.8%, lower than those of three sequenced Streptomyces genomes. Among 85 predicted open reading frames (ORFs) in SLG, 22 ORFs showed little homology with previously known proteins. SLG displays a mosaic structure composed of four modules, indicative of multiple recombination events in its formation. Spontaneous excision and circularization of SLG was observed, and the excision rate appeared to be induced at least fivefold by MNNG exposure. Using constructed mini‐islands of SLG, we demonstrated that Slg01, a P4‐like integrase, was sufficient to promote SLG integration, excision and circularization. Eleven counterpart dnd clusters, which also mapped to GIs in 10 chromosomes and a plasmid, were found in taxonomically unrelated bacterial species from various geographic niches. Additionally, c. 10% of actinomycetes were found to possess a dnd cluster in a survey involving 74 strains. Comparison of dnd clusters in the 12 bacteria strongly suggests that these dnd‐bearing elements might have evolved from a common ancestor similar to plasmid‐originated chromosome II of Pseudoalteromonas haloplanktis TAC125.


BMC Genomics | 2011

Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18

Daqiang Wu; Jing Ye; Hong-Yu Ou; Xue Wei; Xianqing Huang; Ya-Wen He; Yuquan Xu

BackgroundOur previously published reports have described an effective biocontrol agent named Pseudomonas sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of P. aeruginosa, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures.ResultsThe complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved P. aeruginosa core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a capB gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other P. aeruginosa strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of P. aeruginosa strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C.ConclusionsThe P. aeruginosa strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.


PLOS Genetics | 2010

Cleavage of Phosphorothioated DNA and Methylated DNA by the Type IV Restriction Endonuclease ScoMcrA

Guang Liu; Hong-Yu Ou; Tao Wang; Li Li; Huarong Tan; Xiufen Zhou; Kumar Rajakumar; Zixin Deng; Xinyi He

Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16–28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.


PLOS ONE | 2010

sRNAscanner: A Computational Tool for Intergenic Small RNA Detection in Bacterial Genomes

Jayavel Sridhar; Suryanarayanan Ramkumar Narmada; Radhakrishnan Sabarinathan; Hong-Yu Ou; Zixin Deng; Ziauddin Ahamed Rafi; Kumar Rajakumar

Background Bacterial non-coding small RNAs (sRNAs) have attracted considerable attention due to their ubiquitous nature and contribution to numerous cellular processes including survival, adaptation and pathogenesis. Existing computational approaches for identifying bacterial sRNAs demonstrate varying levels of success and there remains considerable room for improvement. Methodology/Principal Findings Here we have proposed a transcriptional signal-based computational method to identify intergenic sRNA transcriptional units (TUs) in completely sequenced bacterial genomes. Our sRNAscanner tool uses position weight matrices derived from experimentally defined E. coli K-12 MG1655 sRNA promoter and rho-independent terminator signals to identify intergenic sRNA TUs through sliding window based genome scans. Analysis of genomes representative of twelve species suggested that sRNAscanner demonstrated equivalent sensitivity to sRNAPredict2, the best performing bioinformatics tool available presently. However, each algorithm yielded substantial numbers of known and uncharacterized hits that were unique to one or the other tool only. sRNAscanner identified 118 novel putative intergenic sRNA genes in Salmonella enterica Typhimurium LT2, none of which were flagged by sRNAPredict2. Candidate sRNA locations were compared with available deep sequencing libraries derived from Hfq-co-immunoprecipitated RNA purified from a second Typhimurium strain (Sittka et al. (2008) PLoS Genetics 4: e1000163). Sixteen potential novel sRNAs computationally predicted and detected in deep sequencing libraries were selected for experimental validation by Northern analysis using total RNA isolated from bacteria grown under eleven different growth conditions. RNA bands of expected sizes were detected in Northern blots for six of the examined candidates. Furthermore, the 5′-ends of these six Northern-supported sRNA candidates were successfully mapped using 5′-RACE analysis. Conclusions/Significance We have developed, computationally examined and experimentally validated the sRNAscanner algorithm. Data derived from this study has successfully identified six novel S. Typhimurium sRNA genes. In addition, the computational specificity analysis we have undertaken suggests that ∼40% of sRNAscanner hits with high cumulative sum of scores represent genuine, undiscovered sRNA genes. Collectively, these data strongly support the utility of sRNAscanner and offer a glimpse of its potential to reveal large numbers of sRNA genes that have to date defied identification. sRNAscanner is available from: http://bicmku.in:8081/sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/.


Nucleic Acids Research | 2013

SecReT4: a web-based bacterial type IV secretion system resource

Dexi Bi; Linmeng Liu; Cui Tai; Zixin Deng; Kumar Rajakumar; Hong-Yu Ou

SecReT4 (http://db-mml.sjtu.edu.cn/SecReT4/) is an integrated database providing comprehensive information of type IV secretion systems (T4SSs) in bacteria. T4SSs are versatile assemblages that promote genetic exchange and/or effector translocation with consequent impacts on pathogenesis and genome plasticity. T4SSs have been implicated in conjugation, DNA uptake and release and effector translocation. The effectors injected into eukaryotic target cells can lead to alteration of host cellular processes during infection. SecReT4 offers a unique, highly organized, readily exploreable archive of known and putative T4SSs and cognate effectors in bacteria. It currently contains details of 10 752 core components mapping to 808 T4SSs and 1884 T4SS effectors found in representatives of 289 bacterial species, as well as a collection of more than 900 directly related references. A broad range of similarity search, sequence alignment, phylogenetic, primer design and other functional analysis tools are readily accessible via SecReT4. We propose that SecReT4 will facilitate efficient investigation of large numbers of these systems, recognition of diverse patterns of sequence-, gene- and/or functional conservation and an improved understanding of the biological roles and significance of these versatile molecular machines. SecReT4 will be regularly updated to ensure its ongoing maximum utility to the research community.

Collaboration


Dive into the Hong-Yu Ou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cui Tai

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xinyi He

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Dexi Bi

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaobin Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yingzhou Xie

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yucheng Shao

University Hospitals of Leicester NHS Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge