Hongbian Li
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hongbian Li.
Nano Letters | 2013
Enzheng Shi; Hongbian Li; Long Yang; Luhui Zhang; Zhen Li; Peixu Li; Yuanyuan Shang; Shiting Wu; Xinming Li; Jinquan Wei; Kunlin Wang; Hongwei Zhu; Dehai Wu; Ying Fang; Anyuan Cao
Carbon nanotube-Si and graphene-Si solar cells have attracted much interest recently owing to their potential in simplifying manufacturing process and lowering cost compared to Si cells. Until now, the power conversion efficiency of graphene-Si cells remains under 10% and well below that of the nanotube-Si counterpart. Here, we involved a colloidal antireflection coating onto a monolayer graphene-Si solar cell and enhanced the cell efficiency to 14.5% under standard illumination (air mass 1.5, 100 mW/cm(2)) with a stable antireflection effect over long time. The antireflection treatment was realized by a simple spin-coating process, which significantly increased the short-circuit current density and the incident photon-to-electron conversion efficiency to about 90% across the visible range. Our results demonstrate a great promise in developing high-efficiency graphene-Si solar cells in parallel to the more extensively studied carbon nanotube-Si structures.
ACS Nano | 2010
Xuchun Gui; Anyuan Cao; Jinquan Wei; Hongbian Li; Yi Jia; Zhen Li; Lili Fan; Kunlin Wang; Hongwei Zhu; Dehai Wu
Porous carbon nanotube networks represent a type of material that can achieve both structural robustness and high flexibility. We demonstrate here controlled synthesis of soft to hard sponges with densities ranging from 5 to 25 mg/cm(3), while retaining a porosity of >99%. The stable sponge-like structure allows excellent compressibility tunable up to 90% volume shrinkage, and the ability to recover most of volume by free expansion. Electrical resistivity of the sponges changes linearly and reversibly after 300 cycles of large-strain compression. Nanotubes forming the three-dimensional scaffold maintain good contact and percolation during large-strain deformation, polymer infiltration, and cross-linking process, suggesting potential applications as strain sensors and conductive nanocomposites.
Chemical Communications | 2010
Hongbian Li; Xuchun Gui; Luhui Zhang; Shanshan Wang; Chunyan Ji; Jinquan Wei; Kunlin Wang; Hongwei Zhu; Dehai Wu; Anyuan Cao
Carbon nanotube sponges show effective filtration for nanoparticles and dye molecules with different sizes and concentrations from water. The three-dimensional interconnected porous structure formed by entangled nanotubes can trap nanoparticles and molecules by physisorption without the need for chemical functionalization. The sponge filters are potential environmental materials for water treatment.
Advanced Materials | 2014
Xuchun Gui; Zhiping Zeng; Yuan Zhu; Hongbian Li; Zhiqiang Lin; Qiming Gan; Rong Xiang; Anyuan Cao; Zikang Tang
Carbon nanotube sponges and aligned arrays are seamlessly integrated into numerous possible configurations such as series, parallel, package, and sandwich complex structures, leading to significantly broadened stress plateau and enhanced energy dissipation.
ACS Nano | 2011
Xuchun Gui; Hongbian Li; Luhui Zhang; Yi Jia; Li Liu; Zhen Li; Jinquan Wei; Kunlin Wang; Hongwei Zhu; Zikang Tang; Dehai Wu; Anyuan Cao
Fabrication of high-performance nanocomposites requires that the nanoscale fillers be dispersed uniformly and form a continuous network throughout the matrix. Direct infiltration of porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, we fabricated CNT sponge nanocomposites by directly infiltrating epoxy fluid into the CNT framework while maintaining the original network structure and CNT contact, with simultaneous improvement in mechanical and electrical properties. The resulting composites have an isotropic structure with electrical resistivities of 10 to 30 Ω·cm along arbitrary directions, much higher than traditional composites by mixing random CNTs with epoxy matrix. We observed reversible resistance change in the sponge composites under compression at modest strains, which can be explained by tunneling conduction model, suggesting potential applications in electromechanical sensors.
Nano Research | 2012
Hongbian Li; Xuchun Gui; Chunyan Ji; Peixu Li; Zhen Li; Luhui Zhang; Enzheng Shi; Ke Zhu; Jinquan Wei; Kunlin Wang; Hongwei Zhu; Dehai Wu; Anyuan Cao
AbstractSemiconducting nanoparticles with lower bandgap (e.g., CdS) are alternative photocatalysts to TiO2, since they have a potentially wider range light of absorption and improved catalytic efficiency. However, they must be securely anchored on a porous substrate for practical applications. Here, we report a hybrid porous photocatalyst fabricated by grafting 4–6 nm diameter CdS nanoparticles uniformly throughout the entire macroporous structure of a three-dimensional carbon nanotube (CNT) sponge. The unique feature of our structure is that only the CdS nanoparticles grafted on the outside surface are active in photocatalysis, while other nanoparticles are stored inside the sponge in the fresh state for use when the catalyst is recycled. Our CdS-CNT hybrid sponges show high efficiency in removing organic contaminants from water. Spectroscopic measurements show that the hybrid sponges are multifunctional, simultaneously performing organic molecular adsorption (using the inter-CNT spacing), and photocatalytic decomposition (by the CdS nanoparticles grafted on the surface), both of which contribute to water purification. Furthermore, the surface part of the sponges can be stripped off to expose inner nanoparticles for use when the catalyst is recycled, without performance degradation.
Advanced Materials | 2015
Enzheng Shi; Hongbian Li; Long Yang; Junfeng Hou; Yuanchang Li; Li Li; Anyuan Cao; Ying Fang
A unique cage growth of graphene is developed by using carbon nanotube (CNT) spider webs as porous templates, resulting in CNT/graphene hybrids with high conductivity and mechanical flexibility. Furthermore, monolithic all-carbon transistors with graphene as active elements and CNT/graphene hybrids as contacts and interconnects are directly formed by chemical synthesis, and flexible all-carbon bioelectronics are subsequently demonstrated for in vivo mapping of cardiac signals.
Nano Letters | 2013
Zengguang Cheng; Junfeng Hou; Qiaoyu Zhou; Tianyi Li; Hongbian Li; Long Yang; Kaili Jiang; Chen Wang; Yuanchang Li; Ying Fang
Semiconducting nanomaterials are being intensively studied as active elements in bioelectronic devices, with the aim of improving spatial resolution. Yet, the consequences of size-reduction on fundamental noise limits, or minimum resolvable signals, and their impact on device design considerations have not been defined. Here, we address these key issues by quantifying the size-dependent performance and limiting factors of graphene (Gra) transducers under physiological conditions. We show that suspended Gra devices represent the optimal configuration for cardiac extracellular electrophysiology in terms of both transducer sensitivity, systematically ~5× higher than substrate-supported devices, and forming tight bioelectronic interfaces. Significantly, noise measurements on free-standing Gra together with theoretical calculations yield a direct relationship between low-frequency 1/f noise and water dipole-induced disorders, which sets fundamental sensitivity limits for Gra devices in physiological media. As a consequence, a square-root-of-area scaling of Gra transducer sensitivity was experimentally revealed to provide a critical design rule for their implementation in bioelectronics.
Nano Research | 2015
Hongbian Li; Qiaoyu Zhou; Yuntian Gao; Xuchun Gui; Long Yang; Mingde Du; Enzheng Shi; Jidong Shi; Anyuan Cao; Ying Fang
Controlled synthesis of hierarchically assembled titanium dioxide (TiO2) nanostructures is important for practical applications in environmental purification and solar energy conversion. We present here the fabrication of interconnected TiO2 nanotubes as a macroscopic bulk material by using a porous carbon nanotube (CNT) sponge as a template. The basic idea is to uniformly coat an amorphous titania layer onto the CNT surface by the infiltration of a TiO2 precursor into the sponge followed by a subsequent hydrolysis process. After calcination, the CNTs are completely removed and the titania is simultaneously crystallized, which results in a porous macrostructure composed of interconnected anatase TiO2 nanotubes. The TiO2 nanotube macrostructures show comparable photocatalytic activities to commercial products (AEROXIDE TiO2 P25) for the degradation of rhodamine B (RhB). Moreover, the TiO2 nanotube macrostructures can be settled and separated from water within 12 h after photocatalysis, whereas P25 remains suspended in solution after weeks. Thus the TiO2 nanotube macrostructures offer the advantage of easy catalyst separation and recycle and can be a promising candidate for wastewater treatment.
ACS Nano | 2011
Chunyan Ji; Hongbian Li; Luhui Zhang; Yu Liu; Yan Li; Yi Jia; Zhen Li; Peixu Li; Enzheng Shi; Jinquan Wei; Kunlin Wang; Hongwei Zhu; Dehai Wu; Anyuan Cao
We report large-scale self-assembly of suspended, straightened, single-walled carbon nanotubes (SWNTs) across regular TiO(2) gel islands. By coating a SWNT network on top of a pool of the TiO(2) colloid and inducing a rapid drying and chapping process, initially curled, random SWNTs can be straightened into aligned arrays and suspended across the island gaps. The suspended SWNT arrays were grafted by semiconducting or metallic nanoparticles, resulting in hybrid structures with tailored and neat morphology, and enhanced photoresponse. We further demonstrate these suspended SWNTs can sustain high speed gas blowing (up to 20 m per second) reversibly for hundreds of cycles, and detect gas velocity by the resistance change.