Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongbo Chi is active.

Publication


Featured researches published by Hongbo Chi.


Journal of Experimental Medicine | 2011

HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells

Lewis Zhichang Shi; Ruoning Wang; Gonghua Huang; Peter Vogel; Geoffrey Neale; Douglas R. Green; Hongbo Chi

HIF1α induction by mTOR represents a metabolic checkpoint for the differentiation of TH17 and Treg cells.


Immunity | 2011

The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation

Ruoning Wang; Christopher P. Dillon; Lewis Zhichang Shi; Robert Carter; David Finkelstein; Laura L. McCormick; Patrick Fitzgerald; Hongbo Chi; Joshua Munger; Douglas R. Green

To fulfill the bioenergetic and biosynthetic demand of proliferation, T cells reprogram their metabolic pathways from fatty acid β-oxidation and pyruvate oxidation via the TCA cycle to the glycolytic, pentose-phosphate, and glutaminolytic pathways. Two of the top-ranked candidate transcription factors potentially responsible for the activation-induced T cell metabolic transcriptome, HIF1α and Myc, were induced upon T cell activation, but only the acute deletion of Myc markedly inhibited activation-induced glycolysis and glutaminolysis in T cells. Glutamine deprivation compromised activation-induced T cell growth and proliferation, and this was partially replaced by nucleotides and polyamines, implicating glutamine as an important source for biosynthetic precursors in active T cells. Metabolic tracer analysis revealed a Myc-dependent metabolic pathway linking glutaminolysis to the biosynthesis of polyamines. Therefore, a Myc-dependent global metabolic transcriptome drives metabolic reprogramming in activated, primary T lymphocytes. This may represent a general mechanism for metabolic reprogramming under patho-physiological conditions.


Nature | 2013

mTORC1 couples immune signals and metabolic programming to establish T reg -cell function

Hu Zeng; Kai Yang; Caryn Cloer; Geoffrey Neale; Peter Vogel; Hongbo Chi

The mechanistic target of rapamycin (mTOR) pathway integrates diverse environmental inputs, including immune signals and metabolic cues, to direct T-cell fate decisions. The activation of mTOR, which is the catalytic subunit of the mTORC1 and mTORC2 complexes, delivers an obligatory signal for the proper activation and differentiation of effector CD4+ T cells, whereas in the regulatory T-cell (Treg) compartment, the Akt–mTOR axis is widely acknowledged as a crucial negative regulator of Treg-cell de novo differentiation and population expansion. However, whether mTOR signalling affects the homeostasis and function of Treg cells remains largely unexplored. Here we show that mTORC1 signalling is a pivotal positive determinant of Treg-cell function in mice. Treg cells have elevated steady-state mTORC1 activity compared to naive T cells. Signals through the T-cell antigen receptor (TCR) and interleukin-2 (IL-2) provide major inputs for mTORC1 activation, which in turn programs the suppressive function of Treg cells. Disruption of mTORC1 through Treg-specific deletion of the essential component raptor leads to a profound loss of Treg-cell suppressive activity in vivo and the development of a fatal early onset inflammatory disorder. Mechanistically, raptor/mTORC1 signalling in Treg cells promotes cholesterol and lipid metabolism, with the mevalonate pathway particularly important for coordinating Treg-cell proliferation and upregulation of the suppressive molecules CTLA4 and ICOS to establish Treg-cell functional competency. By contrast, mTORC1 does not directly affect the expression of Foxp3 or anti- and pro-inflammatory cytokines in Treg cells, suggesting a non-conventional mechanism for Treg-cell functional regulation. Finally, we provide evidence that mTORC1 maintains Treg-cell function partly through inhibiting the mTORC2 pathway. Our results demonstrate that mTORC1 acts as a fundamental ‘rheostat’ in Treg cells to link immunological signals from TCR and IL-2 to lipogenic pathways and functional fitness, and highlight a central role of metabolic programming of Treg-cell suppressive activity in immune homeostasis and tolerance.


Nature Immunology | 2010

The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells.

Guangwei Liu; Kai Yang; Samir Burns; Sharad Shrestha; Hongbo Chi

Naive CD4+ T cells differentiate into diverse effector and regulatory lineages to orchestrate immunity and tolerance. Here we found that the differentiation of proinflammatory T helper type 1 (TH1) cells and anti-inflammatory Foxp3+ regulatory T cells (Treg cells) was reciprocally regulated by S1P1, a receptor for the bioactive lipid sphingosine 1-phosphate (S1P). S1P1 inhibited the generation of extrathymic and natural Treg cells while driving TH1 development in a reciprocal manner and disrupted immune homeostasis. S1P1 signaled through the kinase mTOR and antagonized the function of transforming growth factor-β mainly by attenuating sustained activity of the signal transducer Smad3. S1P1 function was dependent on endogenous sphingosine kinase activity. Notably, two seemingly unrelated immunosuppressants, FTY720 and rapamycin, targeted the same S1P1 and mTOR pathway to regulate the dichotomy between TH1 cells and Treg cells. Our studies establish an S1P1-mTOR axis that controls T cell lineage specification.


Nature Immunology | 2011

The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function

Kai Yang; Geoffrey Neale; Douglas R. Green; Weifeng He; Hongbo Chi

The mechanisms that regulate T cell quiescence are poorly understood. We report that the tumor suppressor Tsc1 established a quiescence program in naive T cells by controlling cell size, cell cycle entry and responses to stimulation of the T cell antigen receptor. Abrogation of quiescence predisposed Tsc1-deficient T cells to apoptosis that resulted in loss of conventional T cells and invariant natural killer T cells. Loss of Tsc1 function dampened in vivo immune responses to bacterial infection. Tsc1-deficient T cells had more activity of the serine-threonine kinase complex mTORC1 but less mTORC2 activity, and activation of mTORC1 was essential for the disruption of immune homeostasis. Therefore, Tsc1-dependent control of mTOR is crucial in actively maintaining the quiescence of naive T cells to facilitate adaptive immune function.


Nature Immunology | 2013

Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection

Christopher Lupfer; Paul G. Thomas; Paras K. Anand; Peter Vogel; Jennifer Martinez; Gonghua Huang; Maggie Green; Mondira Kundu; Hongbo Chi; Ramnik J. Xavier; Douglas R. Green; Mohamed Lamkanfi; Charles A. Dinarello; Peter C. Doherty; Thirumala-Devi Kanneganti

NOD2 receptor and the cytosolic protein kinase RIPK2 regulate NF-κB and MAP kinase signaling during bacterial infections, but the role of this immune axis during viral infections has not been addressed. We demonstrate that Nod2−/− and Ripk2−/− mice are hypersusceptible to infection with influenza A virus. Ripk2−/− cells exhibited defective autophagy of mitochondria (mitophagy), leading to enhanced mitochondrial production of superoxide and accumulation of damaged mitochondria, which resulted in greater activation of the NLRP3 inflammasome and production of IL-18. RIPK2 regulated mitophagy in a kinase-dependent manner by phosphorylating the mitophagy inducer ULK1. Accordingly, Ulk1−/− cells exhibited enhanced mitochondrial production of superoxide and activation of caspase-1. These results demonstrate a role for NOD2-RIPK2 signaling in protection against virally triggered immunopathology by negatively regulating activation of the NLRP3 inflammasome and production of IL-18 via ULK1-dependent mitophagy.


Immunity | 2013

T Cell Exit from Quiescence and Differentiation into Th2 Cells Depend on Raptor-mTORC1-Mediated Metabolic Reprogramming

Kai Yang; Sharad Shrestha; Hu Zeng; Peer W. F. Karmaus; Geoffrey Neale; Peter Vogel; David A. Guertin; Richard F. Lamb; Hongbo Chi

Naive T cells respond to antigen stimulation by exiting from quiescence and initiating clonal expansion and functional differentiation, but the control mechanism is elusive. Here we describe that Raptor-mTORC1-dependent metabolic reprogramming is a central determinant of this transitional process. Loss of Raptor abrogated T cell priming and T helper 2 (Th2) cell differentiation, although Raptor function is less important for continuous proliferation of actively cycling cells. mTORC1 coordinated multiple metabolic programs in T cells including glycolysis, lipid synthesis, and oxidative phosphorylation to mediate antigen-triggered exit from quiescence. mTORC1 further linked glucose metabolism to the initiation of Th2 cell differentiation by orchestrating cytokine receptor expression and cytokine responsiveness. Activation of Raptor-mTORC1 integrated T cell receptor and CD28 costimulatory signals in antigen-stimulated T cells. Our studies identify a Raptor-mTORC1-dependent pathway linking signal-dependent metabolic reprogramming to quiescence exit, and this in turn coordinates lymphocyte activation and fate decisions in adaptive immunity.


Nature Immunology | 2015

Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses

Sharad Shrestha; Kai Yang; Cliff Guy; Peter Vogel; Geoffrey Neale; Hongbo Chi

The interplay between effector and regulatory T (Treg) cells is crucial for adaptive immunity, but how Treg control diverse effector responses is elusive. We found that the phosphatase PTEN links Treg stability to repression of TH1 and TFH (follicular helper) responses. Depletion of PTEN in Treg resulted in excessive TFH and germinal center responses and spontaneous inflammatory disease. These defects are considerably blocked by deletion of Interferon-γ, indicating coordinated control of TH1 and TFH responses. Mechanistically, PTEN maintains Treg stability and metabolic balance between glycolysis and mitochondrial fitness. Moreover, PTEN deficiency upregulates mTORC2-Akt activity, and loss of this activity restores PTEN-deficient Treg function. Our studies establish a PTEN-mTORC2 axis that maintains Treg stability and coordinates Treg-mediated control of effector responses.The interplay between effector T cells and regulatory T cells (Treg cells) is crucial for adaptive immunity, but how Treg cells control diverse effector responses is elusive. We found that the phosphatase PTEN links Treg cell stability to repression of type 1 helper T cell (TH1 cell) and follicular helper T cell (TFH cell) responses. Depletion of PTEN in Treg cells resulted in excessive TFH cell and germinal center responses and spontaneous inflammatory disease. These defects were considerably blocked by deletion of interferon-γ, indicating coordinated control of TH1 and TFH responses. Mechanistically, PTEN maintained Treg cell stability and metabolic balance between glycolysis and mitochondrial fitness. Moreover, PTEN deficiency upregulates activity of the metabolic checkpoint kinase complex mTORC2 and the serine-threonine kinase Akt, and loss of this activity restores functioning of PTEN-deficient Treg cells. Our studies establish a PTEN-mTORC2 axis that maintains Treg cell stability and coordinates Treg cell–mediated control of effector responses.


Cytokine | 2009

Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination

Gonghua Huang; Lewis Zhichang Shi; Hongbo Chi

Stress-activated MAP kinases (MAPKs), comprised of JNK and p38, play prominent roles in the innate and adaptive immune systems. Activation of MAPKs is mediated by a three-tiered kinase module comprised of MAPK kinase kinases (MAP3Ks), MAPK kinases (MAP2Ks) and MAPKs through sequential protein phosphorylation. Activated MAPKs, in turn, phosphorylate transcription factors and other targets to regulate gene transcription and immune responses. Recent studies have provided new insight into the upstream and downstream components of the MAPK pathway that facilitate the activation and propagation of MAPK signaling in immune responses. Moreover, MAPK activity is negatively regulated by MAPK phosphatases (MKPs), a group of dual-specificity phosphatases that dephosphorylate and inactivate the MAPKs. Here we discuss the recent advances in our understanding of these regulatory processes in MAPK signaling with a focus on their impacts on immune function.


Nature Immunology | 2014

Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells

Shawn A. Mahmud; Luke S. Manlove; Heather Schmitz; Yan Xing; Yanyan Wang; David L. Owen; Jason M. Schenkel; Jonathan S. Boomer; Jonathan M. Green; Hideo Yagita; Hongbo Chi; Kristin A. Hogquist; Michael A. Farrar

Regulatory T (Treg) cells express tumor necrosis factor receptor superfamily (TNFRSF) members, but their role in thymic Treg development is undefined. We demonstrate that Treg progenitors highly express the TNFRSF members GITR, OX40, and TNFR2. Expression of these receptors correlates directly with T cell receptor (TCR) signal strength, and requires CD28 and the kinase TAK1. Neutralizing TNFSF ligands markedly reduced Treg development. Conversely, TNFRSF agonists enhanced Treg differentiation by augmenting IL-2R/STAT5 responsiveness. GITR-ligand costimulation elicited a dose-dependent enrichment of lower-affinity cells within the Treg repertoire. In vivo, combined inhibition of GITR, OX40 and TNFR2 abrogated Treg development. Thus TNFRSF expression on Treg progenitors translates strong TCR signals into molecular parameters that specifically promote Treg differentiation and shape the Treg repertoire.Regulatory T cells (Treg cells) express members of the tumor-necrosis factor (TNF) receptor superfamily (TNFRSF), but the role of those receptors in the thymic development of Treg cells is undefined. We found here that Treg cell progenitors had high expression of the TNFRSF members GITR, OX40 and TNFR2. Expression of those receptors correlated directly with the signal strength of the T cell antigen receptor (TCR) and required the coreceptor CD28 and the kinase TAK1. The neutralization of ligands that are members of the TNF superfamily (TNFSF) diminished the development of Treg cells. Conversely, TNFRSF agonists enhanced the differentiation of Treg cell progenitors by augmenting responsiveness of the interleukin 2 receptor (IL-2R) and transcription factor STAT5. Costimulation with the ligand of GITR elicited dose-dependent enrichment for cells of lower TCR affinity in the Treg cell repertoire. In vivo, combined inhibition of GITR, OX40 and TNFR2 abrogated the development of Treg cells. Thus, expression of members of the TNFRSF on Treg cell progenitors translated strong TCR signals into molecular parameters that specifically promoted the development of Treg cells and shaped the Treg cell repertoire.

Collaboration


Dive into the Hongbo Chi's collaboration.

Top Co-Authors

Avatar

Geoffrey Neale

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter Vogel

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Gonghua Huang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Kai Yang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Yanyan Wang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Hu Zeng

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharad Shrestha

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Cliff Guy

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Thirumala-Devi Kanneganti

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge