Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongfeng Jiang is active.

Publication


Featured researches published by Hongfeng Jiang.


Biochimica et Biophysica Acta | 2009

Hepatic stellate cell lipid droplets: A specialized lipid droplet for retinoid storage

William S. Blaner; Sheila M. O'Byrne; Nuttaporn Wongsiriroj; Johannes Kluwe; Diana M. D'Ambrosio; Hongfeng Jiang; Robert F. Schwabe; Elizabeth M. C. Hillman; Roseann Piantedosi; Jenny Libien

The majority of retinoid (vitamin A and its metabolites) present in the body of a healthy vertebrate is contained within lipid droplets present in the cytoplasm of hepatic stellate cells (HSCs). Two types of lipid droplets have been identified through histological analysis of HSCs within the liver: smaller droplets bounded by a unit membrane and larger membrane-free droplets. Dietary retinoid intake but not triglyceride intake markedly influences the number and size of HSC lipid droplets. The lipids present in rat HSC lipid droplets include retinyl ester, triglyceride, cholesteryl ester, cholesterol, phospholipids and free fatty acids. Retinyl ester and triglyceride are present at similar concentrations, and together these two classes of lipid account for approximately three-quarters of the total lipid in HSC lipid droplets. Both adipocyte-differentiation related protein and TIP47 have been identified by immunohistochemical analysis to be present in HSC lipid droplets. Lecithin:retinol acyltransferase (LRAT), an enzyme responsible for all retinyl ester synthesis within the liver, is required for HSC lipid droplet formation, since Lrat-deficient mice completely lack HSC lipid droplets. When HSCs become activated in response to hepatic injury, the lipid droplets and their retinoid contents are rapidly lost. Although loss of HSC lipid droplets is a hallmark of developing liver disease, it is not known whether this contributes to disease development or occurs simply as a consequence of disease progression. Collectively, the available information suggests that HSC lipid droplets are specialized organelles for hepatic retinoid storage and that loss of HSC lipid droplets may contribute to the development of hepatic disease.


Journal of Clinical Investigation | 2014

Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation

Jianwen Wei; Mathieu Ferron; Christopher J. Clarke; Yusuf A. Hannun; Hongfeng Jiang; William S. Blaner; Gerard Karsenty

Insulin signaling in osteoblasts has been shown recently to contribute to whole-body glucose homeostasis in animals fed a normal diet; however, it is unknown whether bone contributes to the insulin resistance that develops in animals challenged by a high-fat diet (HFD). Here, we evaluated the consequences of osteoblast-specific overexpression of or loss of insulin receptor in HFD-fed mice. We determined that the severity of glucose intolerance and insulin resistance that mice develop when fed a HFD is in part a consequence of osteoblast-dependent insulin resistance. Insulin resistance in osteoblasts led to a decrease in circulating levels of the active form of osteocalcin, thereby decreasing insulin sensitivity in skeletal muscle. Insulin resistance developed in osteoblasts as the result of increased levels of free saturated fatty acids, which promote insulin receptor ubiquitination and subsequent degradation. Together, these results underscore the involvement of bone, among other tissues, in the disruption of whole-body glucose homeostasis resulting from a HFD and the involvement of insulin and osteocalcin cross-talk in glucose intolerance. Furthermore, our data indicate that insulin resistance develops in bone as the result of lipotoxicity-associated loss of insulin receptors.


Journal of Clinical Investigation | 2012

Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice

Ding Ai; Juan M. Baez; Hongfeng Jiang; Donna M. Conlon; Antonio Hernandez-Ono; Maria Frank-Kamenetsky; Kevin Fitzgerald; Andrew J. Murphy; Connie W. Woo; Alanna Strong; Henry N. Ginsberg; Ira Tabas; Daniel J. Rader; Alan R. Tall

Recent GWAS have identified SNPs at a human chromosom1 locus associated with coronary artery disease risk and LDL cholesterol levels. The SNPs are also associated with altered expression of hepatic sortilin-1 (SORT1), which encodes a protein thought to be involved in apoB trafficking and degradation. Here, we investigated the regulation of Sort1 expression in mouse models of obesity. Sort1 expression was markedly repressed in both genetic (ob/ob) and high-fat diet models of obesity; restoration of hepatic sortilin-1 levels resulted in reduced triglyceride and apoB secretion. Mouse models of obesity also exhibit increased hepatic activity of mammalian target of rapamycin complex 1 (mTORC1) and ER stress, and we found that administration of the mTOR inhibitor rapamycin to ob/ob mice reduced ER stress and increased hepatic sortilin-1 levels. Conversely, genetically increased hepatic mTORC1 activity was associated with repressed Sort1 and increased apoB secretion. Treating WT mice with the ER stressor tunicamycin led to marked repression of hepatic sortilin-1 expression, while administration of the chemical chaperone PBA to ob/ob mice led to amelioration of ER stress, increased sortilin-1 expression, and reduced apoB and triglyceride secretion. Moreover, the ER stress target Atf3 acted at the SORT1 promoter region as a transcriptional repressor, whereas knockdown of Atf3 mRNA in ob/ob mice led to increased hepatic sortilin-1 levels and decreased apoB and triglyceride secretion. Thus, in mouse models of obesity, induction of mTORC1 and ER stress led to repression of hepatic Sort1 and increased VLDL secretion via Atf3. This pathway may contribute to dyslipidemia in metabolic disease.


Gut | 2011

Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis

Johannes Kluwe; Nuttaporn Wongsiriroj; Juliane S. Troeger; Geum-Youn Gwak; Jean-Philippe Pradere; Hongfeng Jiang; Maham Siddiqi; Roseann Piantedosi; Sheila M. O'Byrne; William S. Blaner; Robert F. Schwabe

Objective Hepatic stellate cells (HSCs) contain a number of bioactive metabolites or their precursors including retinoids in their characteristic lipid droplets. The loss of lipid droplets and retinoids is a hallmark of HSC activation, but it remains unclear whether this loss promotes HSC activation, liver fibrogenesis or carcinogenesis. Design Spontaneous and experimental fibrogenesis as well as a diethylnitrosamine-induced hepatocarcinogenesis were investigated in lecithin-retinol acyltransferase (LRAT)-deficient mice which lack retinoid-containing lipids droplets in their HSCs. Results Following HSC activation, LRAT expression was rapidly lost, emphasising its importance in lipid droplet biology in HSCs. Surprisingly, there was no difference in fibrosis induced by bile duct ligation (BDL) or by eight injections of carbon tetrachloride (CCl4) between wild-type and LRAT-deficient mice. To exclude the possibility that the effects on fibrogenesis were missed due to the rapid downregulation of LRAT following HSC activation, acute as well as spontaneous liver fibrosis was investigated. However, there was no increased fibrosis in 3-, 8- and 12-month-old LRAT-deficient mice and in LRAT-deficient mice after a single injection of CCl4 compared with wild-type mice. To determine whether the absence of retinoids in HSCs affects hepatocarcinogenesis, wild-type and LRAT-deficient mice were injected with diethylnitrosamine. LRAT deficiency decreased diethylnitrosamine-induced injury and tumour load and increased the expression of the retinoic acid responsive genes Cyp26a1, RARb and p21, suggesting that the lower tumour load of LRAT-deficient mice was a result of increased retinoid signalling and subsequent p21-mediated inhibition of proliferation. Conclusions The absence of retinoid-containing HSC lipid droplets does not promote HSC activation but reduces hepatocarcinogenesis.


Journal of Lipid Research | 2011

Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol: a targeted lipidomic and gene expression study

Robin D. Clugston; Hongfeng Jiang; Man Xia Lee; Roseann Piantedosi; Jason J. Yuen; Rajasekhar Ramakrishnan; Michael J. Lewis; Max E. Gottesman; Li-Shin Huang; Ira J. Goldberg; Paul D. Berk; William S. Blaner

Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease.


Journal of Lipid Research | 2011

Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy

Jorge Matias Caviglia; Constance Gayet; Tsuguhito Ota; Antonio Hernandez-Ono; Donna M. Conlon; Hongfeng Jiang; Edward A. Fisher; Henry N. Ginsberg

Although short-term incubation of hepatocytes with oleic acid (OA) stimulates secretion of apolipoprotein B100 (apoB100), exposure to higher doses of OA for longer periods inhibits secretion in association with induction of endoplasmic reticulum (ER) stress. Palmitic acid (PA) induces ER stress, but its effects on apoB100 secretion are unclear. Docosahexaenoic acid (DHA) inhibits apoB100 secretion, but its effects on ER stress have not been studied. We compared the effects of each of these fatty acids on ER stress and apoB100 secretion in McArdle RH7777 (McA) cells: OA and PA induced ER stress and inhibited apoB100 secretion at higher doses; PA was more potent because it also increased the synthesis of ceramide. DHA did not induce ER stress but was the most potent inhibitor of apoB100 secretion, acting via stimulation of autophagy. These unique effects of each fatty acid were confirmed when they were infused into C57BL6J mice. Our results suggest that when both increased hepatic secretion of VLDL apoB100 and hepatic steatosis coexist, reducing ER stress might alleviate hepatic steatosis but at the expense of increased VLDL secretion. In contrast, increasing autophagy might reduce VLDL secretion without causing steatosis.


American Journal of Physiology-endocrinology and Metabolism | 2011

Cardiomyocyte lipids impair β-adrenergic receptor function via PKC activation.

Konstantinos Drosatos; Kalyani G. Bharadwaj; Anastasios Lymperopoulos; Shota Ikeda; Raffay Khan; Yunying Hu; Rajiv Agarwal; Shuiqing Yu; Hongfeng Jiang; Susan F. Steinberg; William S. Blaner; Walter J. Koch; Ira J. Goldberg

Normal hearts have increased contractility in response to catecholamines. Because several lipids activate PKCs, we hypothesized that excess cellular lipids would inhibit cardiomyocyte responsiveness to adrenergic stimuli. Cardiomyocytes treated with saturated free fatty acids, ceramide, and diacylglycerol had reduced cellular cAMP response to isoproterenol. This was associated with increased PKC activation and reduction of β-adrenergic receptor (β-AR) density. Pharmacological and genetic PKC inhibition prevented both palmitate-induced β-AR insensitivity and the accompanying reduction in cell surface β-ARs. Mice with excess lipid uptake due to either cardiac-specific overexpression of anchored lipoprotein lipase, PPARγ, or acyl-CoA synthetase-1 or high-fat diet showed reduced inotropic responsiveness to dobutamine. This was associated with activation of protein kinase C (PKC)α or PKCδ. Thus, several lipids that are increased in the setting of lipotoxicity can produce abnormalities in β-AR responsiveness. This can be attributed to PKC activation and reduced β-AR levels.


The FASEB Journal | 2011

β-Carotene and its cleavage enzyme β-carotene-15,15`-oxygenase (CMOI) affect retinoid metabolism in developing tissues

Youn Kyung Kim; Lesley Wassef; Stacey Chung; Hongfeng Jiang; Adrian Wyss; William S. Blaner; Loredana Quadro

The mammalian embryo relies on maternal circulating retinoids (vitamin A derivatives) for development. β‐Carotene is the major human dietary provitamin A. β‐Carotene‐15,15′‐oxygenase (CMOI) has been proposed as the main enzyme generating retinoid from β‐carotene in vivo. CMOI is expressed in embryonic tissues, suggesting that β‐carotene provides retinoids locally during development. We performed loss of CMOI function studies in mice lacking retinol‐binding protein (RBP), an established model of embryonic vitamin A deficiency (VAD). We show that, unexpectedly, lack of CMOI in the developing tissues further exacerbates the severity of VAD and thus the embryonic malformations of RBP−/− mice. Since β ‐carotene was not present in any of the mouse diets, we unveiled a novel action of CMOI independent from its β ‐carotene cleavage activity. We also show for the first time that CMOI exerts an additional function on retinoid metabolism by influencing retinyl ester formation via modulation of lecithin:retinol acyltransferase (LRAT) activity, at least in developing tissues. Finally, we demonstrate unequivocally that β‐carotene can serve as an alternative vitamin A source for the in situ synthesis of retinoids in developing tissues by the action of CMOI.—Kim, Y.‐K., Wassef, L., Chung, S., Jiang, H., Wyss, A., Blaner, W. S., Quadro, L. β‐Carotene and its cleavage enzyme β‐carotene‐15,15′‐oxygenase (CMOI) affect retinoid metabolism in developing tissues. FASEB J. 25, 1641–1652 (2011). www.fasebj.org


Circulation-heart Failure | 2013

Peroxisome Proliferator–Activated Receptor-γ Activation Prevents Sepsis-Related Cardiac Dysfunction and Mortality In Mice

Konstantinos Drosatos; Raffay Khan; Chad M. Trent; Hongfeng Jiang; Ni-Huiping Son; William S. Blaner; Shunichi Homma; P. Christian Schulze; Ira J. Goldberg

Impaired cardiac contractility contributes to the hypotension and increased mortality that occur with sepsis1. A possible cause of sepsis-mediated cardiac dysfunction is reduced energy production due in part to compromised fatty acid oxidation (FAO)2-5 and glucose catabolism3, 6. Thus, it is likely that sepsis compromises cardiac energy production, which might be the major cause of cardiac dysfunction. Alternatively, sepsis induces the production of inflammatory cytokines, such as tumor necrosis factor (TNF) α, interleukin (IL)-1 and IL-6, and these might directly alter heart function7-9. Intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) has been extensively used to model many of the clinical features of sepsis, including elevated inflammation and cardiac dysfunction10. LPS leads to production of inflammatory cytokines7-9, 11 and also reduces cardiac energy utilization2, 3, 12. Nuclear receptors, particularly peroxisomal proliferator-activated receptors (PPARs), regulate cardiac FAO. The PPAR family consists of three members, PPARα, PPARδ and PPARγ. PPARα increases FA storage in triglycerides13 and FAO in heart14 and induces expression of peroxisomal and mitochondrial enzymes. Besides PPARα, cardiac FAO can be increased by activation of PPARγ15 or PPARδ16. Cardiomyocyte-specific overexpression of PPARα14 or PPARγ17 leads to cardiac lipid accumulation, an indication that lipid uptake exceeds FAO. PPARγ-coactivator-1 (PGC-1) α and β18 enhance FAO and mitochondrial biogenesis19. Both PPARα and PGC-1 mRNA levels are markedly reduced in the heart by LPS administration2, 3, 12, 20, while PPARγ is not affected2. Our group showed that maintenance of normal cardiac FAO via c-Jun-N-terminal kinase (JNK) inhibitor-mediated prevention of PPARα downregulation rescued cardiac function in septic mice despite elevated expression of cardiac inflammatory markers. In a similar context constitutive cardiac expression of PGC-1β prevented cardiac dysfunction that was caused by LPS-mediated sepsis3, an observation that was proposed to be due to improvement in cardiac FAO and attenuation of reactive oxygen species production. In the current study we show that constitutive cardiomyocyte-specific expression of PPARγ or systemic administration of the PPARγ agonist, rosiglitazone, increased cardiac FAO and prevented cardiac dysfunction in mice with LPS-induced sepsis, despite increased expression of cardiac inflammatory markers. In addition, we show that rosiglitazone-mediated activation of PPARγ prevents the loss of cardiac mitochondria that occurs in sepsis. Moreover, we show that restoration of cardiac FAO by rosiglitazone not only prevents but also treats LPS-induced heart dysfunction and improves survival. Thus the use of rosiglitazone is proposed as a potential treatment for septic cardiac dysfunction.Background—Cardiac dysfunction with sepsis is associated with both inflammation and reduced fatty acid oxidation. We hypothesized that energy deprivation accounts for sepsis-related cardiac dysfunction. Methods and Results—Escherichia coli lipopolysaccharide (LPS) administered to C57BL/6 mice (wild type) induced cardiac dysfunction and reduced fatty acid oxidation and mRNA levels of peroxisome proliferator–activated receptor (PPAR)-&agr; and its downstream targets within 6–8 hours. Transgenic mice in which cardiomyocyte-specific expression of PPAR&ggr; is driven by the &agr;-myosin heavy chain promoter (&agr;MHC-PPAR&ggr;) were protected from LPS-induced cardiac dysfunction. Despite a reduction in PPAR&agr;, fatty acid oxidation and associated genes were not decreased in hearts of LPS-treated &agr;MHC-PPAR&ggr; mice. LPS treatment, however, continued to induce inflammation-related genes, such as interleukin-1&agr;, interleukin-1&bgr;, interleukin-6, and tumor necrosis factor-&agr; in hearts of &agr;MHC-PPAR&ggr; mice. Treatment of wild-type mice with LPS and the PPAR&ggr; agonist, rosiglitazone, but not the PPAR&agr; agonist (WY-14643), increased fatty acid oxidation, prevented LPS-mediated reduction of mitochondria, and treated cardiac dysfunction, as well as it improved survival, despite continued increases in the expression of cardiac inflammatory markers. Conclusions—Activation of PPAR&ggr; in LPS-treated mice prevented cardiac dysfunction and mortality, despite development of cardiac inflammation and PPAR&agr; downregulation.


PLOS ONE | 2014

Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy

Kyoko Yoshida; Hongfeng Jiang; MiJung Kim; J. Vink; Serge Cremers; David C. Paik; Ronald Wapner; Mala Mahendroo; Kristin M. Myers

The changes in the mechanical integrity of the cervix during pregnancy have implications for a successful delivery. Cervical collagens are known to remodel extensively in mice with progressing gestation leading to a soft cervix at term. During this process, mature crosslinked collagens are hypothesized to be replaced with immature less crosslinked collagens to facilitate cervical softening and ripening. To determine the mechanical role of collagen crosslinks during normal mouse cervical remodeling, tensile load-to-break tests were conducted for the following time points: nonpregnant (NP), gestation day (d) 6, 12, 15, 18 and 24 hr postpartum (PP) of the 19-day gestation period. Immature crosslinks (HLNL and DHLNL) and mature crosslinks (DPD and PYD) were measured using ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS). There were no significant changes in the total immature crosslink density (HLNL+DHLNL mol per collagen mol) throughout normal mouse gestation (range: 0.31–0.49). Total mature crosslink density (PYD+DPD mol per collagen mol) decreased significantly in early softening from d6 to d15 (d6: 0.17, d12: 0.097, d15: 0.026) and did not decrease with further gestation. The maturity ratio (total mature to total immature crosslinks) significantly decreased in early softening from d6 to d15 (d6: 0.2, d15: 0.074). All of the measured crosslinks correlated significantly with a measure of tissue stiffness and strength, with the exception of the immature crosslink HLNL. This data provides quantitative evidence to support the hypothesis that as mature crosslinked collagens decline, they are replaced by immature collagens to facilitate increased tissue compliance in the early softening period from d6 to d15.

Collaboration


Dive into the Hongfeng Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Christian Schulze

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge Cremers

Columbia University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge