Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Honghe Sun is active.

Publication


Featured researches published by Honghe Sun.


Nature Genetics | 2013

The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions

Shaogui Guo; Jianguo Zhang; Honghe Sun; Jérôme Salse; William J. Lucas; Haiying Zhang; Yi Zheng; Linyong Mao; Yi Ren; Zhiwen Wang; Jiumeng Min; Xiaosen Guo; Florent Murat; Byung-Kook Ham; Zhaoliang Zhang; Shan Gao; Mingyun Huang; Yimin Xu; Silin Zhong; Aureliano Bombarely; Lukas A. Mueller; Hong Zhao; Hongju He; Zhang Y; Zhonghua Zhang; Sanwen Huang; Tao Tan; Erli Pang; Kui Lin; Qun Hu

Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2× = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism.


Nature Communications | 2013

Draft genome of the kiwifruit Actinidia chinensis

Shengxiong Huang; Jian Ding; Dejing Deng; Wei Tang; Honghe Sun; Dongyuan Liu; Lei Zhang; Xiangli Niu; Xia Zhang; Meng Meng; Jinde Yu; Jia Liu; Yi Han; Wei Shi; Danfeng Zhang; Shuqing Cao; Zhao-Jun Wei; Yongliang Cui; Yanhua Xia; Huaping Zeng; Kan Bao; Lin Lin; Ya Min; Hua Zhang; Min Miao; Xiaofeng Tang; Yunye Zhu; Yuan Sui; Guangwei Li; Hanju Sun

The kiwifruit (Actinidia chinensis) is an economically and nutritionally important fruit crop with remarkably high vitamin C content. Here we report the draft genome sequence of a heterozygous kiwifruit, assembled from ~140-fold next-generation sequencing data. The assembled genome has a total length of 616.1 Mb and contains 39,040 genes. Comparative genomic analysis reveals that the kiwifruit has undergone an ancient hexaploidization event (γ) shared by core eudicots and two more recent whole-genome duplication events. Both recent duplication events occurred after the divergence of kiwifruit from tomato and potato and have contributed to the neofunctionalization of genes involved in regulating important kiwifruit characteristics, such as fruit vitamin C, flavonoid and carotenoid metabolism. As the first sequenced species in the Ericales, the kiwifruit genome sequence provides a valuable resource not only for biological discovery and crop improvement but also for evolutionary and comparative genomics analysis, particularly in the asterid lineage.


PLOS ONE | 2012

A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome

Yi Ren; Hong Zhao; Qinghe Kou; Jiao Jiang; Shaogui Guo; Haiying Zhang; Wenju Hou; Xiaohua Zou; Honghe Sun; Guoyi Gong; Amnon Levi; Yong Xu

As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F8 population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits.


Molecular Plant | 2016

iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases.

Yi Zheng; Chen Jiao; Honghe Sun; Hernan G. Rosli; Marina A. Pombo; Peifen Zhang; Michael Banf; Xinbin Dai; Gregory B. Martin; James J. Giovannoni; Patrick Xuechun Zhao; Seung Y. Rhee; Zhangjun Fei

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


The Plant Cell | 2015

Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

Zhonghua Zhang; Linyong Mao; Huiming Chen; Fengjiao Bu; Guangcun Li; Jinjing Sun; Shuai Li; Honghe Sun; Chen Jiao; Rachel Blakely; Junsong Pan; Run Cai; Ruibang Luo; Yves Van de Peer; E. Jacobsen; Zhangjun Fei; Sanwen Huang

Genome-wide scanning of large size sequence changes revealed a tandem duplication of a DNA segment that gives rise to cucumbers bearing only female flowers. Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep resequencing of 115 diverse accessions. The largest proportion of cucumber SVs was formed through nonhomologous end-joining rearrangements, and the occurrence of SVs is closely associated with regions of high nucleotide diversity. These SVs affect the coding regions of 1676 genes, some of which are associated with cucumber domestication. Based on the map, we discovered a copy number variation (CNV) involving four genes that defines the Female (F) locus and gives rise to gynoecious cucumber plants, which bear only female flowers and set fruit at almost every node. The CNV arose from a recent 30.2-kb duplication at a meiotically unstable region, likely via microhomology-mediated break-induced replication. The SV set provides a snapshot of structural variations in plants and will serve as an important resource for exploring genes underlying key traits and for facilitating practical breeding in cucumber.


PLOS ONE | 2015

Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development

Shaogui Guo; Honghe Sun; Haiying Zhang; Jingan Liu; Yi Ren; Guoyi Gong; Chen Jiao; Yi Zheng; Wencai Yang; Zhangjun Fei; Yong Xu

Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an important vegetable crop world-wide. Watermelon fruit quality is a complex trait determined by various factors such as sugar content, flesh color and flesh texture. Fruit quality and developmental process of cultivated and wild watermelon are highly different. To systematically understand the molecular basis of these differences, we compared transcriptome profiles of fruit tissues of cultivated watermelon 97103 and wild watermelon PI296341-FR. We identified 2,452, 826 and 322 differentially expressed genes in cultivated flesh, cultivated mesocarp and wild flesh, respectively, during fruit development. Gene ontology enrichment analysis of these genes indicated that biological processes and metabolic pathways related to fruit quality such as sweetness and flavor were significantly changed only in the flesh of 97103 during fruit development, while those related to abiotic stress response were changed mainly in the flesh of PI296341-FR. Our comparative transcriptome profiling analysis identified critical genes potentially involved in controlling fruit quality traits including α-galactosidase, invertase, UDP-galactose/glucose pyrophosphorylase and sugar transporter genes involved in the determination of fruit sugar content, phytoene synthase, β-carotene hydroxylase, 9-cis-epoxycarotenoid dioxygenase and carotenoid cleavage dioxygenase genes involved in carotenoid metabolism, and 4-coumarate:coenzyme A ligase, cellulose synthase, pectinesterase, pectinesterase inhibitor, polygalacturonase inhibitor and α-mannosidase genes involved in the regulation of flesh texture. In addition, we found that genes in the ethylene biosynthesis and signaling pathway including ACC oxidase, ethylene receptor and ethylene responsive factor showed highly ripening-associated expression patterns, indicating a possible role of ethylene in fruit development and ripening of watermelon, a non-climacteric fruit. Our analysis provides novel insights into watermelon fruit quality and ripening biology. Furthermore, the comparative expression profile data we developed provides a valuable resource to accelerate functional studies in watermelon and facilitate watermelon crop improvement.


Plant and Cell Physiology | 2013

RadishBase: A Database for Genomics and Genetics of Radish

Di Shen; Honghe Sun; Mingyun Huang; Yi Zheng; Xixiang Li; Zhangjun Fei

Radish is an economically important vegetable crop. During the past several years, large-scale genomics and genetics resources have been accumulated for this species. To store, query, analyze and integrate these radish resources efficiently, we have developed RadishBase (http://bioinfo.bti.cornell.edu/radish), a genomics and genetics database of radish. Currently the database contains radish mitochondrial genome sequences, expressed sequence tag (EST) and unigene sequences and annotations, biochemical pathways, EST-derived single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, and genetic maps. RadishBase is designed to enable users easily to retrieve and visualize biologically important information through a set of efficient query interfaces and analysis tools, including the BLAST search and unigene annotation query interfaces, and tools to classify unigenes functionally, to identify enriched gene ontology (GO) terms and to visualize genetic maps. A database containing radish pathways predicted from unigene sequences is also included in RadishBase. The tools and interfaces in RadishBase allow efficient mining of recently released and continually expanding large-scale radish genomics and genetics data sets, including the radish genome sequences and RNA-seq data sets.


Nature Communications | 2017

Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement

Naibin Duan; Yang Bai; Honghe Sun; Nan Wang; Yumin Ma; Mingjun Li; Xin Wang; Chen Jiao; Noah Legall; Linyong Mao; Sibao Wan; Kun Wang; Tianming He; Shouqian Feng; Zongying Zhang; Zhiquan Mao; Xiang Shen; Xiaoliu Chen; Yuanmao Jiang; Shujing Wu; Chengmiao Yin; Shunfeng Ge; Long Yang; Shenghui Jiang; Haifeng Xu; Jingxuan Liu; Deyun Wang; Changzhi Qu; Yicheng Wang; Weifang Zuo

Human selection has reshaped crop genomes. Here we report an apple genome variation map generated through genome sequencing of 117 diverse accessions. A comprehensive model of apple speciation and domestication along the Silk Road is proposed based on evidence from diverse genomic analyses. Cultivated apples likely originate from Malus sieversii in Kazakhstan, followed by intensive introgressions from M. sylvestris. M. sieversii in Xinjiang of China turns out to be an “ancient” isolated ecotype not directly contributing to apple domestication. We have identified selective sweeps underlying quantitative trait loci/genes of important fruit quality traits including fruit texture and flavor, and provide evidences supporting a model of apple fruit size evolution comprising two major events with one occurring prior to domestication and the other during domestication. This study outlines the genetic basis of apple domestication and evolution, and provides valuable information for facilitating marker-assisted breeding and apple improvement.Apple is one of the most important fruit crops. Here, the authors perform deep genome resequencing of 117 diverse accessions and reveal comprehensive models of apple origin, speciation, domestication, and fruit size evolution as well as candidate genes associated with important agronomic traits.


Scientific Reports | 2016

De novo and comparative transcriptome analysis of cultivated and wild spinach

Chenxi Xu; Chen Jiao; Yi Zheng; Honghe Sun; Wenli Liu; Xiaofeng Cai; Xiaoli Wang; Shuang Liu; Yimin Xu; Beiquan Mou; Shaojun Dai; Zhangjun Fei; Quanhua Wang

Spinach (Spinacia oleracea L.) is an economically important green leafy vegetable crop. In this study, we performed deep transcriptome sequencing for nine spinach accessions: three from cultivated S. oleracea, three from wild S. turkestanica and three from wild S. tetrandra. A total of approximately 100 million high-quality reads were generated, which were de novo assembled into 72,151 unigenes with a total length of 46.5 Mb. By comparing sequences of these unigenes against different protein databases, nearly 60% of them were annotated and 50% could be assigned with Gene Ontology terms. A total of 387 metabolic pathways were predicted from the assembled spinach unigenes. From the transcriptome sequencing data, we were able to identify a total of ~320,000 high-quality single nucleotide polymorphisms (SNPs). Phylogenetic analyses using SNPs as well as gene expression profiles indicated that S. turkestanica was more closely related to the cultivated S. oleracea than S. tetrandra. A large number of genes involved in responses to biotic and abiotic stresses were found to be differentially expressed between the cultivated and wild spinach. Finally, an interactive online database (http://www.spinachbase.org) was developed to allow the research community to efficiently retrieve, query, mine and analyze our transcriptome dataset.


Nature Communications | 2017

Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions

Chenxi Xu; Chen Jiao; Honghe Sun; Xiaofeng Cai; Xiaoli Wang; Chenhui Ge; Yi Zheng; Wenli Liu; Xuepeng Sun; Yimin Xu; Jie Deng; Zhonghua Zhang; Sanwen Huang; Shaojun Dai; Beiquan Mou; Quanxi Wang; Zhangjun Fei; Quanhua Wang

Spinach is an important leafy vegetable enriched with multiple necessary nutrients. Here we report the draft genome sequence of spinach (Spinacia oleracea, 2n=12), which contains 25,495 protein-coding genes. The spinach genome is highly repetitive with 74.4% of its content in the form of transposable elements. No recent whole genome duplication events are observed in spinach. Genome syntenic analysis between spinach and sugar beet suggests substantial inter- and intra-chromosome rearrangements during the Caryophyllales genome evolution. Transcriptome sequencing of 120 cultivated and wild spinach accessions reveals more than 420 K variants. Our data suggests that S. turkestanica is likely the direct progenitor of cultivated spinach and spinach domestication has a weak bottleneck. We identify 93 domestication sweeps in the spinach genome, some of which are associated with important agronomic traits including bolting, flowering and leaf numbers. This study offers insights into spinach evolution and domestication and provides resources for spinach research and improvement.

Collaboration


Dive into the Honghe Sun's collaboration.

Top Co-Authors

Avatar

Zhangjun Fei

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Chen Jiao

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Zheng

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Zhonghua Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Amnon Levi

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Linyong Mao

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Chenxi Xu

Shanghai Normal University

View shared research outputs
Top Co-Authors

Avatar

Quanhua Wang

Shanghai Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaofeng Cai

Shanghai Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge