Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongjie Fan is active.

Publication


Featured researches published by Hongjie Fan.


Journal of Bacteriology | 2011

Complete Genome Sequence of Streptococcus equi subsp. zooepidemicus Strain ATCC 35246

Zhe Ma; Jianing Geng; Hui Zhang; Haiying Yu; Li Yi; Meng Lei; Cheng-ping Lu; Hongjie Fan; Songnian Hu

Streptococcus equi subsp. zooepidemicus is an opportunistic pathogen. It has caused a very large economic loss in the swine industry of China and has become a threat to human health. We announce the complete genome sequence of S. equi subsp. zooepidemicus strain ATCC 35246, which provides opportunities to understand its pathogenesis mechanism and genetic basis.


Archives of Virology | 2015

Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor

Chang-chao Huan; Yue Wang; Bo Ni; Rui Wang; Li Huang; Xiaofeng Ren; Guang-zhi Tong; Chan Ding; Hongjie Fan; Xiang Mao

It is well known that many viruses use heparan sulfate as the initial attachment factor. In the present study, we determined whether porcine epidemic diarrhea virus (PEDV), an emerging veterinary virus, infects Vero cells by attaching to heparan sulfate. Western blot analysis, real-time PCR, and plaque formation assay revealed that PEDV infection was inhibited when the virus was pretreated with heparin (an analogue of heparan sulfate). There was no inhibitory effect when the cells were pre-incubated with heparin. We next demonstrated that enzymatic removal of the highly sulfated domain of heparan sulfate by heparinase I treatment inhibited PEDV infection. We also confirmed that sodium chlorate, which interferes with heparan sulfate biosynthesis, also inhibited PEDV infection. Furthermore, we examined the effect of two heparin derivatives with different types of sulfation on PEDV infection. The data suggested de-N-sulfated heparin, but not N-acetyl-de-O-sulfated heparin, inhibits PEDV infection. In summary, our studies revealed that heparan sulfate acts as the attachment factor of PEDV in Vero cells.


Gene | 2014

Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC070731 contains a unique 105 K genomic island

Zongfu Wu; Weixue Wang; Min Tang; Jing Shao; Chen Dai; Wei Zhang; Hongjie Fan; Huochun Yao; Jie Zong; Dai Chen; Junning Wang; Chengping Lu

Streptococcus suis (SS) is an important swine pathogen worldwide that occasionally causes serious infections in humans. SS infection may result in meningitis in pigs and humans. The pathogenic mechanisms of SS are poorly understood. Here, we provide the complete genome sequence of S. suis serotype 2 (SS2) strain SC070731 isolated from a pig with meningitis. The chromosome is 2,138,568bp in length. There are 1933 predicted protein coding sequences and 96.7% (57/59) of the known virulence-associated genes are present in the genome. Strain SC070731 showed similar virulence with SS2 virulent strains HA9801 and ZY05719, but was more virulent than SS2 virulent strain P1/7 in the zebrafish infection model. Comparative genomic analysis revealed a unique 105K genomic island in strain SC070731 that is absent in seven other sequenced SS2 strains. Further analysis of the 105K genomic island indicated that it contained a complete nisin locus similar to the nisin U locus in S. uberis strain 42, a prophage similar to S. oralis phage PH10 and several antibiotic resistance genes. Several proteins in the 105K genomic island, including nisin and RelBE toxin-antitoxin system, contribute to the bacterial fitness and virulence in other pathogenic bacteria. Further investigation of newly identified gene products, including four putative new virulence-associated surface proteins, will improve our understanding of SS pathogenesis.


Current Microbiology | 2014

Biofilm Formation, Host-Cell Adherence, and Virulence Genes Regulation of Streptococcus suis in Response to Autoinducer-2 Signaling

Yang Wang; Li Yi; Zhicheng Zhang; Hongjie Fan; Xiangchao Cheng; Chengping Lu

Autoinducer-2 (AI-2) is a universal signal molecule mediating intra- and interspecies communication among bacteria. AI-2 is a byproduct of the LuxS enzyme during the catabolism of S-adenosylhomocysteine and plays critical roles in regulating various behaviors of bacteria. In our previous study, the function of LuxS in AI-2 production was verified in Streptococcus suis (SS). Decreased levels of SS biofilm formation and host-cell adherence as well as the inability to produce AI-2 were observed in SS having a luxS mutant gene. In this study, exogenous addition of a low concentration of AI-2 synthesized in vitro was found to promote biofilm formation and host-cell adherence. However, higher concentrations of AI-2 inhibited SS biofilm formation and host-cell adherence. Real-time PCR results showed that the mRNA level of virulence factors of SS biofilm, gdh, cps2, sly, and mrp increased and ef, fbps, and gapdh decreased with increasing AI-2 concentrations. These findings demonstrated that AI-2 supplemented exogenously acted as a concentration-dependent signaling molecule to regulate SS biofilm formation, host-cell adherence, and transcription levels of many virulence genes.


BMC Genomics | 2013

Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246

Zhe Ma; Jianing Geng; Li Yi; Bin Xu; Ruoyu Jia; Yue Li; Qingshu Meng; Hongjie Fan; Songnian Hu

BackgroundStreptococcus equi ssp. zooepidemicus (S. zooepidemicus) is an important pathogen causing swine streptococcosis in China. Pathogenicity islands (PAIs) of S. zooepidemicus have been transferred among bacteria through horizontal gene transfer (HGT) and play important roles in the adaptation and increased virulence of S. zooepidemicus. The present study used comparative genomics to examine the different pathogenicities of S. zooepidemicus.ResultsGenome of S. zooepidemicus ATCC35246 (Sz35246) comprises 2,167,264-bp of a single circular chromosome, with a GC content of 41.65%. Comparative genome analysis of Sz35246, S. zooepidemicus MGCS10565 (Sz10565), Streptococcus equi. ssp. equi. 4047 (Se4047) and S. zooepidemicus H70 (Sz70) identified 320 Sz35246-specific genes, clustered into three toxin-antitoxin (TA) systems PAIs and one restriction modification system (RM system) PAI. These four acquired PAIs encode proteins that may contribute to the overall pathogenic capacity and fitness of this bacterium to adapt to different hosts. Analysis of the in vivo and in vitro transcriptomes of this bacterium revealed differentially expressed PAI genes and non-PAI genes, suggesting that Sz35246 possess mechanisms for infecting animals and adapting to a wide range of host environments. Analysis of the genome identified potential Sz35246 virulence genes. Genes of the Fim III operon were presumed to be involved in breaking the host-restriction of Sz35246.ConclusionGenome wide comparisons of Sz35246 with three other strains and transcriptome analysis revealed novel genes related to bacterial virulence and breaking the host-restriction. Four specific PAIs, which were judged to have been transferred into Sz35246 genome through HGT, were identified for the first time. Further analysis of the TA and RM systems in the PAIs will improve our understanding of the pathogenicity of this bacterium and could lead to the development of diagnostics and vaccines.


Veterinary Microbiology | 2014

A novel vaccine against Porcine circovirus type 2 (PCV2) and Streptococcus equi ssp. zooepidemicus (SEZ) co-infection.

Huixing Lin; Zhe Ma; Xuqiu Yang; Hongjie Fan; Chengping Lu

To develop a vaccine against Porcine circovirus type 2 (PCV2) and Streptococcus equi ssp. zooepidemicus (SEZ) co-infection, the genes of porcine IL-18, capsid protein (Cap) of PCV2 and M-like protein (SzP) of SEZ were inserted into the swinepox virus (SPV) genome by homologous recombination. The recombinant swinepox virus rSPV-ICS was verified by PCR and indirect immunofluorescence assays. To evaluate the immunogenicity of rSPV-ICS, 28 PCV2 and SEZ seronegative Bama minipigs were immunized with rSPV-ICS (n=8), commercial PCV2 vaccine and SEZ vaccine (n=8) or wild type SPV (n=8). The results showed that SzP-specific antibody and PCV2 neutralizing antibody of the rSPV-ICS immunized group increased significantly compared to the wild type SPV treated group after vaccination and increased continuously over time. The levels of IL-4 and IFN-γ in the rSPV-ICS immunized group were significantly higher than the other three groups, respectively. After been co-challenged with PCV2 and SEZ, 87.5% piglets in rSPV-ICS immunized group were survived. Significant reductions in gross lung lesion score, histopathological lung lesion score, and lymph node lesion score were noticed in the rSPV-ICS immunized group compared with the wtSPV treated group. The results suggested that the recombinant rSPV-ICS provided piglets with significant protection against PCV2-SEZ co-infection; thus, it offers proof-of-principle for the development of a vaccine for the prevention of these swine diseases.


Veterinary Microbiology | 2017

Streptococcus suis small RNA rss04 contributes to the induction of meningitis by regulating capsule synthesis and by inducing biofilm formation in a mouse infection model

Genhui Xiao; Huanyu Tang; Shouming Zhang; Haiyan Ren; Jiao Dai; Liying Lai; Chengping Lu; Huochun Yao; Hongjie Fan; Zongfu Wu

Streptococcus suis (SS) is an important pathogen for pigs, and it is also considered as a zoonotic agent for humans. Meningitis is one of the most common features of the infection caused by SS, but little is known about the mechanisms of SS meningitis. Recent studies have revealed that small RNAs (sRNAs) have emerged as key regulators of the virulence in several bacteria. In the previous study, we reported that SS sRNA rss04 was up-regulated in pig cerebrospinal fluid and contributes to SS virulence in a zebrafish infection model. Here, we show that rss04 facilitates SS invasion of mouse brain and lung in vivo. Label-free quantitation mass spectrometry analysis revealed that rss04 regulates transcriptional regulator CcpA and several virulence factors including LuxS. Transmission electron microscope and Dot-blot analyses indicated that rss04 represses capsular polysaccharide (CPS) production, which in turn facilitates SS adherence and invasion of mouse brain microvascular endothelial cells bEnd.3 in vitro and activates the mRNA expression of TLR2, CCL2, IL-6 and TNF-α in mouse brain in vivo at 12h post-infection. In addition, rss04 positively regulates SS biofilm formation. Survival analysis of infected mice showed that biofilm state in brain contributes to SS virulence by intracranial subarachnoidal route of infection. Together, our data reveal that SS sRNA rss04 contributes to the induction of meningitis by regulating the CPS synthesis and by inducing biofilm formation, thereby increasing the virulence in a mouse infection model. To our knowledge, rss04 represents the first bacterial sRNA that plays definitive roles in bacterial meningitis.


Veterinary Microbiology | 2016

A Streptococcus suis LysM domain surface protein contributes to bacterial virulence

Zongfu Wu; Jing Shao; Haiyan Ren; Huanyu Tang; Mingyao Zhou; Jiao Dai; Liying Lai; Huochun Yao; Hongjie Fan; Dai Chen; Jie Zong; Chengping Lu

Streptococcus suis (SS) is a major swine pathogen, as well as a zoonotic agent for humans. Numerous factors contribute to SS virulence, but the pathogenesis of SS infection is poorly understood. Here, we show that a novel SS surface protein containing a LysM at the N-terminus (SS9-LysM) contributes to SS virulence. Homology analysis revealed that the amino acid sequence of SS9-LysM from the SS strain GZ0565 shares 99.8-68.7% identity with homologous proteins from other SS strains and 41.2% identity with Group B Streptococcal protective antigen Sip. Immunization experiments showed that 7 out of 30 mice immunized with recombinant SS9-LysM were protected against challenge with the virulent GZ0565 strain, while all of the control mice died within 48h following bacterial challenge. In mouse infection model, the virulence of the SS9-LysM deletion mutant (ΔSS9-LysM) was reduced compared with the wild-type (WT) strain GZ0565 and SS9-LysM complemented strain. In addition, ΔSS9-LysM was significantly more sensitive to killing by pig blood ex vivo and mouse blood in vivo compared with the WT strain and SS9-LysM complemented strain. In vivo transcriptome analysis in mouse blood showed that the WT strain reduced the expression of host genes related to iron-binding by SS9-LysM. Moreover, the total free iron concentration in blood from infected mice was significantly lower for the ΔSS9-LysM strain compared with the WT strain. Together, our data reveal that SS9-LysM facilitates SS survival within blood by releasing more free iron from the host. This represents a new mechanism of SS pathogenesis.


PLOS ONE | 2015

Crystal Structure and Identification of Two Key Amino Acids Involved in AI-2 Production and Biofilm Formation in Streptococcus suis LuxS

Yang Wang; Li Yi; Shaohui Wang; Hongjie Fan; Chan Ding; Xiang Mao; Chengping Lu

Streptococcus suis has emerged as an important zoonotic pathogen that causes meningitis, arthritis, septicemia and even sudden death in pigs and humans. Quorum sensing is the signaling network for cell-to-cell communication that bacterial cells can use to monitor their own population density through production and exchange of signal molecules. S-Ribosylhomocysteinase (LuxS) is the key enzyme involved in the activated methyl cycle. Autoinducer 2 (AI-2) is the adduct of borate and a ribose derivative and is produced from S-adenosylhomocysteine (SAH). AI-2 can mediate interspecies communication and in some species facilitate the bacterial behavior regulation such as biofilm formation and virulence in both Gram-positive and Gram-negative bacteria. Here, we reported the overexpression, purification and crystallographic structure of LuxS from S. suis. Our results showed the catalytically active LuxS exists as a homodimer in solution. Inductively coupled plasma-mass spectrometry (ICP-MS) revealed the presence of Zn2+ in LuxS. Although the core structure shares the similar topology with LuxS proteins from other bacterial species, structural analyses and comparative amino acid sequence alignments identified two key amino acid differences in S. suis LuxS, Phe80 and His87, which are located near the substrate binding site. The results of site-directed mutagenesis and enzymology studies confirmed that these two residues affect the catalytic activity of the enzyme. These in vitro results were corroborated in vivo by expression of the LuxS variants in a S. suis ΔluxS strain. The single and two amino acid of LuxS variant decreased AI-2 production and biofilm formation significantly compared to that of the parent strain. Our findings highlight the importance of key LuxS residues that influence the AI-2 production and biofilm formation in S.suis.


Journal of Microbiology | 2014

The identification of six novel proteins with fibronectin or collagen type I binding activity from Streptococcus suis serotype 2

Hui Zhang; Jun-xi Zheng; Li Yi; Yue Li; Zhe Ma; Hongjie Fan; Chengping Lu

Streptococcus suis, a major swine pathogen, is an emerging zoonotic agent that causes meningitis and septic shock. Bacterial cell wall and secreted proteins are often involved in interactions with extracellular matrix proteins (ECMs), which play important roles in the initial steps of pathogenesis. In this study, 2D SDS-PAGE, western blotting-based binding affinity measurements, and microtiter plate binding assays were used to identify cell wall and secreted proteins from S. suis that interact with fibronectin and collagen type I. We identified six proteins from S. suis, including three proteins (translation elongation factor G, oligopeptide-binding protein OppA precursor, and phosphoglycerate mutase) that show both fibronectin and collagen type I binding activity. To the best of our knowledge, these three newly identified proteins had no previously reported fibronectin or collagen type I binding activity. Overall, the aim in this study was to identify proteins with ECM binding activity from S. suis and it represents the first report of six new proteins from S. suis that interact with fibronectin or collagen type I.

Collaboration


Dive into the Hongjie Fan's collaboration.

Top Co-Authors

Avatar

Chengping Lu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhe Ma

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huixing Lin

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li Yi

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bin Xu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huochun Yao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiang Mao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zongfu Wu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yang Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge