Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongjie Yuan is active.

Publication


Featured researches published by Hongjie Yuan.


Pharmacological Reviews | 2010

Glutamate Receptor Ion Channels: Structure, Regulation, and Function

Stephen F. Traynelis; Lonnie P. Wollmuth; Chris J. McBain; Frank S. Menniti; Katie M. Vance; Kevin K. Ogden; Kasper B. Hansen; Hongjie Yuan; Scott J. Myers; Raymond Dingledine

The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.


The Journal of Physiology | 2007

Astrocytic control of synaptic NMDA receptors

C. Justin Lee; Guido Mannaioni; Hongjie Yuan; Dong Hoo Woo; Melissa B. Gingrich; Stephen F. Traynelis

Astrocytes express a wide range of G‐protein coupled receptors that trigger release of intracellular Ca2+, including P2Y, bradykinin and protease activated receptors (PARs). By using the highly sensitive sniffer‐patch technique, we demonstrate that the activation of P2Y receptors, bradykinin receptors and protease activated receptors all stimulate glutamate release from cultured or acutely dissociated astrocytes. Of these receptors, we have utilized PAR1 as a model system because of favourable pharmacological and molecular tools, its prominent expression in astrocytes and its high relevance to neuropathological processes. Astrocytic PAR1‐mediated glutamate release in vitro is Ca2+ dependent and activates NMDA receptors on adjacent neurones in culture. Activation of astrocytic PAR1 in hippocampal slices induces an APV‐sensitive inward current in CA1 neurones and causes APV‐sensitive neuronal depolarization in CA1 neurones, consistent with release of glutamate from astrocytes. PAR1 activation enhances the NMDA receptor‐mediated component of synaptic miniature EPSCs, evoked EPSCs and evoked EPSPs in a Mg2+‐dependent manner, which may reflect spine head depolarization and consequent reduction of NMDA receptor Mg2+ block during subsequent synaptic currents. The release of glutamate from astrocytes following PAR1 activation may also lead to glutamate occupancy of some perisynaptic NMDA receptors, which pass current following relief of tonic Mg2+ block during synaptic depolarization. These results suggest that astrocytic G‐protein coupled receptors that increase intracellular Ca2+ can tune synaptic NMDA receptor responses.


The Journal of Neuroscience | 2009

Control of NMDA Receptor Function by the NR2 Subunit Amino-Terminal Domain

Hongjie Yuan; Kasper B. Hansen; Katie M. Vance; Kevin K. Ogden; Stephen F. Traynelis

NMDA receptors comprised of different NR2 subunits exhibit strikingly unique biophysical and pharmacological properties. Here, we report that the extracellular amino-terminal domain (ATD) of the NR2 subunit controls pharmacological and kinetic properties of recombinant NMDA receptors, such as agonist potency, deactivation time course, open probability (POPEN), and mean open/shut duration. Using ATD deletion mutants of NR2A, NR2B, NR2C, NR2D, and chimeras of NR2A and NR2D with interchanged ATD [NR2A-(2D-ATD) and NR2D-(2A-ATD)], we show that the ATD contributes to the low glutamate potency of NR2A-containing NMDA receptors and the high glutamate potency of NR2D-containing receptors. The ATD influences the deactivation time courses of NMDA receptors, as removal of the ATD from NR2A slows the deactivation rate, while removal of the ATD from NR2B, NR2C and NR2D accelerates the deactivation rate. Open probability also is influenced by the ATD. Removal of the ATD from NR2A or replacement of the NR2A-ATD with that of NR2D decreases POPEN in single-channel recordings from outside-out patches of HEK 293 cells. In contrast, deletion of the ATD from NR2D or replacement of the NR2D ATD with that of NR2A increases POPEN and mean open duration. These data demonstrate the modular nature of NMDA receptors, and show that the ATD of the different NR2 subunits plays an important role in fine-tuning the functional properties of the individual NMDA receptor subtypes.


Neuron | 2014

Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors.

Kasper B. Hansen; Kevin K. Ogden; Hongjie Yuan; Stephen F. Traynelis

NMDA receptors are tetrameric ligand-gated ion channels comprised of GluN1, GluN2, and GluN3 subunits. Two different GluN2 subunits have been identified in most NMDA receptor-expressing cells, and the majority of native receptors are triheteromers containing two GluN1 and two different GluN2. In contrast to diheteromeric NMDA receptors, little is known about the function of triheteromers. We developed a method to provide selective cell-surface expression of recombinant GluN1/GluN2A/GluN2B triheteromers and compared properties of these receptors with those of GluN1/GluN2A and GluN1/GluN2B diheteromers. We show that glutamate deactivation of triheteromers is distinct from those of GluN1/GluN2A and GluN1/GluN2B and reveal modulation of triheteromers by subunit-selective antagonists ifenprodil, CP-101,606, TCN-201, and extracellular Zn(2+). Furthermore, kinetic measurements suggest variation in the ifenprodil binding site of triheteromers compared to GluN1/GluN2B diheteromers. This work provides insight into the distinct properties of GluN1/GluN2A/GluN2B triheteromers, which are presumably the most abundant NMDA receptors in the adult forebrain.


Molecular Pharmacology | 2007

Subunit-specific agonist activity at NR2A, NR2B, NR2C, and NR2D containing N-methyl-D-aspartate glutamate receptors

Kevin Erreger; Matthew T. Geballe; Anders Kristensen; Philip E. Chen; Kasper B. Hansen; C. Justin Lee; Hongjie Yuan; Phuong Thi Quy Le; Polina Lyuboslavsky; Nicola Micale; Lars N. Jorgensen; Rasmus P. Clausen; David J. A. Wyllie; James P. Snyder; Stephen F. Traynelis

The four N-methyl-d-aspartate (NMDA) receptor NR2 subunits (NR2A-D) have different developmental, anatomical, and functional profiles that allow them to serve different roles in normal and neuropathological situations. Identification of subunit-selective NMDA receptor agonists, antagonists, or modulators could prove to be both valuable pharmacological tools as well as potential new therapeutic agents. We evaluated the potency and efficacy of a wide range of glutamate-like compounds at NR1/NR2A, NR1/NR2B, NR1/NR2C, and NR1/NR2D receptors. Twenty-five of 53 compounds examined exhibited agonist activity at the glutamate binding site of NMDA receptors. Concentration-response relationships were determined for these agonists at each NR2 subunit. We find consistently higher potency at the NR2D subunit for a wide range of dissimilar structures, with (2S,4R)-4-methylglutamate (SYM2081) showing the greatest differential potency between NR2A- and NR2D-containing receptors (46-fold). Analysis of chimeric NR2A/D receptors suggests that enhanced agonist potency for NR2D is controlled by residues in both of the domains (Domain1 and Domain2) that compose the bilobed agonist binding domain. Molecular dynamics (MD) simulations comparing a crystallography-based hydrated NR1/NR2A model with a homology-based NR1/NR2D hydrated model of the agonist binding domains suggest that glutamate exhibits a different binding mode in NR2D compared with NR2A that accommodates a 4-methyl substitution in SYM2081. Mutagenesis of functionally divergent residues supports the conclusions drawn based on the modeling studies. Despite high homology and conserved atomic contact residues within the agonist binding pocket of NR2A and NR2D, glutamate adopts a different binding orientation that could be exploited for the development of subunit selective agonists and competitive antagonists.


The Journal of Physiology | 2007

Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block

Shashank M. Dravid; Kevin Erreger; Hongjie Yuan; Katherine L. Nicholson; Phuong Thi Quy Le; Polina Lyuboslavsky; Antoine G. Almonte; Ernest Murray; Cara Mosley; Jeremy Barber; Adam French; Robert L. Balster; Thomas F. Murray; Stephen F. Traynelis

We have compared the potencies of structurally distinct channel blockers at recombinant NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptors. The IC50 values varied with stereochemistry and subunit composition, suggesting that it may be possible to design subunit‐selective channel blockers. For dizocilpine (MK‐801), the differential potency of MK‐801 stereoisomers determined at recombinant NMDA receptors was confirmed at native receptors in vitro and in vivo. Since the proton sensor is tightly linked both structurally and functionally to channel gating, we examined whether blocking molecules that interact in the channel pore with the gating machinery can differentially sense protonation of the receptor. Blockers capable of remaining trapped in the pore during agonist unbinding showed the strongest dependence on extracellular pH, appearing more potent at acidic pH values that promote channel closure. Determination of pKa values for channel blockers suggests that the ionization of ketamine but not of other blockers can influence its pH‐dependent potency. Kinetic modelling and single channel studies suggest that the pH‐dependent block of NR1/NR2A by (−)MK‐801 but not (+)MK‐801 reflects an increase in the MK‐801 association rate even though protons reduce channel open probability and thus MK‐801 access to its binding site. Allosteric modulators that alter pH sensitivity alter the potency of MK‐801, supporting the interpretation that the pH sensitivity of MK‐801 binding reflects the changes at the proton sensor rather than a secondary effect of pH. These data suggest a tight coupling between the proton sensor and the ion channel gate as well as unique subunit‐specific mechanisms of channel block.


Annals of clinical and translational neurology | 2014

GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine.

Tyler Mark Pierson; Hongjie Yuan; Eric D. Marsh; Karin Fuentes-Fajardo; David Adams; Thomas C. Markello; Gretchen Golas; Dimitre R. Simeonov; Conisha Holloman; Anel Tankovic; Manish M. Karamchandani; John M. Schreiber; James C. Mullikin; Cynthia J. Tifft; Camilo Toro; Cornelius F. Boerkoel; Stephen F. Traynelis; William A Gahl

Early‐onset epileptic encephalopathies have been associated with de novo mutations of numerous ion channel genes. We employed techniques of modern translational medicine to identify a disease‐causing mutation, analyze its altered behavior, and screen for therapeutic compounds to treat the proband.


Nature Communications | 2010

A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors

Praseeda Mullasseril; Kasper B. Hansen; Katie M. Vance; Kevin K. Ogden; Hongjie Yuan; Natalie L. Kurtkaya; Rose Santangelo; Anna G. Orr; Phuong Thi Quy Le; Kimberly Vellano; Dennis C. Liotta; Stephen F. Traynelis

NMDA receptors are tetrameric complexes of NR1 and NR2A-D subunits that mediate excitatory synaptic transmission and have a role in neurological disorders. In this article, we identify a novel subunit-selective potentiator of NMDA receptors containing the NR2C or NR2D subunit, which could allow selective modification of circuit function in regions expressing NR2C/D subunits. The substituted tetrahydroisoquinoline CIQ (3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone) enhances receptor responses two-fold with an EC(50) of 3 μM by increasing channel opening frequency without altering mean open time or EC(50) values for glutamate or glycine. The actions of CIQ depend on a single residue in the M1 region (NR2D Thr592) and on the linker between the N-terminal domain and agonist binding domain. CIQ potentiates native NR2D-containing NMDA receptor currents from subthalamic neurons. Our identification of a subunit-selective NMDA receptor modulator reveals a new class of pharmacological tools with which to probe the role of NR2C- and NR2D-containing NMDA receptors in brain function and disease.


Molecular Pharmacology | 2015

Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

Hongjie Yuan; Chian-Ming Low; Olivia A. Moody; Andrew Jenkins; Stephen F. Traynelis

The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases.


Journal of Biological Chemistry | 2005

Conserved Structural and Functional Control of N-Methyl-d-aspartate Receptor Gating by Transmembrane Domain M3

Hongjie Yuan; Kevin Erreger; Shashank M. Dravid; Stephen F. Traynelis

The molecular events controlling glutamate receptor ion channel gating are complex. The movement of transmembrane domain M3 within N-methyl-d-aspartate (NMDA) receptor subunits has been suggested to be one structural determinant linking agonist binding to channel gating. Here we report that covalent modification of NR1-A652C or the analogous mutation in NR2A, -2B, -2C, or -2D by methanethiosulfonate ethylammonium (MT-SEA) occurs only in the presence of glutamate and glycine, and that modification potentiates recombinant NMDA receptor currents. The modified channels remain open even after removing glutamate and glycine from the external solution. The degree of potentiation depends on the identity of the NR2 subunit (NR2A < NR2B < NR2C,D) inversely correlating with previous measurements of channel open probability. MTSEA-induced modification of channels is associated with increased glutamate potency, increased mean single-channel open time, and slightly decreased channel conductance. Modified channels are insensitive to the competitive antagonists d-2-amino-5-phosphonovaleric acid (APV) and 7-Cl-kynurenic acid, as well as allosteric modulators of gating (extracellular protons and Zn2+). However, channels remain fully sensitive to Mg2+ blockade and partially sensitive to pore block by (+)MK-801, (-)MK-801, ketamine, memantine, amantadine, and dextrorphan. The partial sensitivity to (+)MK-801 may reflect its ability to stimulate agonist unbinding from MT-SEA-modified receptors. In summary, these data suggest that the SYTANLAAF motif within M3 is a conserved and critical determinant of channel gating in all NMDA receptors.

Collaboration


Dive into the Hongjie Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge