Hongjuan Shi
Xuzhou Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hongjuan Shi.
Brain Research | 2015
Zhao Q; Jinxia Hu; Jie Xiang; Gu Y; Jin P; Fang Hua; Zuohui Zhang; Yonghai Liu; Kun Zan; Jie Zu; Xinxin Yang; Hongjuan Shi; Jin-Zhou Zhu; Yun Xu; Guiyun Cui; Xinchun Ye
Stem cell-based treatments have been reported to be a potential strategy for stroke. However, tumorigenic potential and low survival rates of transplanted cells could attenuate the efficacy of the stem cell-based treatments. The application of stem cell-condition medium (CM) may be a practicable approach to conquer these limitations. In this study, we investigated whether intranasal administration of human umbilical cord mesenchymal stem cells (hUCMSCs)-CM has the therapeutic effects in rats after stroke. Adult male rats were subjected to middle cerebral artery occlusion (MCAo) and were treated by intranasal routine with or without hUCMSCs-CM (1 ml/kg/d), starting 24h after MCAo and daily for 14 days. Neurological functional tests, blood brain barrier (BBB) leakage, were measured. Angiogenesis and angiogenic factor expression were measured by immunohistochemistry, and Western blot, respectively. hUCMSCs-CM treatment of stroke by intranasal routine starting 24h after MCAo in rats significantly enhances BBB functional integrity and promotes functional outcome but does not decrease lesion volume compared to rats in DMEM/F12 medium control group and saline control group. Treatment of ischemic rats with hUCMSCs-CM by intranasal routine also significantly decreases the levels of Ang2 and increases the levels of both Ang1 and Tie2 in the ischemic brain. To take together, increased expression of Ang1 and Tie2 and decreased expression of Ang2, induced by hUCMSCs-CM treatment, contribute to vascular remodeling in the ischemic brain which plays an important role in functional outcome after stroke.
Experimental Neurology | 2017
Xinchun Ye; Tong Shen; Jinxia Hu; Liang Zhang; Yunshan Zhang; Lei Bao; Chengcheng Cui; Guoliang Jin; Kun Zan; Zuohui Zhang; Xinxin Yang; Hongjuan Shi; Jie Zu; Ming Yu; Chengjie Song; Yulan Wang; Suhua Qi; Guiyun Cui
ABSTRACT Previous research has shown that Purinergic 2X7 receptor (P2X7R) and NLRP3 inflammasome contribute to the inflammatory activation. In this study, we investigated whether P2X7R/NLRP3 pathway is involved in the caspase‐3 dependent neuronal apoptosis after ischemic stroke by using a focal cortex ischemic stroke model. The expressions of P2X7R, NLRP3 inflammsome components, and cleaved caspase‐3 were significantly enhanced in the ischemic brain tissue after stroke. However, the expression of cleaved caspase‐3 was significantly attenuated after treatment of stroke with P2X7R antagonist (BBG) or NLRP3 inhibitor (MCC950). The treatment also significantly reduced the infarction volume, neuronal apoptosis, and neurological impairment. In addition, in vitro data also support the hypothesis that P2X7R/NLRP3 pathway plays a vital role in caspase‐3 dependent neuronal apoptosis after ischemic stroke. Further investigation of effective regulation of P2X7R and NLRP3 in stroke is warranted. HIGHLIGHTSThe expressions of P2X7R, NLRP3 inflammsome components were increased after stroke.BBG treatment reduced neurological impairment, neuronal apoptosis.MCC950 treatment also reduced neurological impairment, neuronal apoptosis.NLRP3 mediated neuronal apoptosis could be ameliorated by a P2X7R antagonist.In vitro data also supported that P2X7R/NLRP3 pathway triggers neuronal apoptosis.
Biochemical and Biophysical Research Communications | 2017
Xinchun Ye; Dandan Zuo; Lu Yu; Liang Zhang; Jiao Tang; Chengcheng Cui; Lei Bao; Kun Zan; Zuohui Zhang; Xinxin Yang; Hao Chen; Hai Tang; Jie Zu; Hongjuan Shi; Guiyun Cui
There is no effective therapy for intracerebral hemorrhage (ICH) because of poor understanding of the mechanisms of brain injury after hemorrhage. The NLRP3 inflammasome, as a vital component of innate immune system, which is associated with a wide range of human CNS disorders, including ICH. But its detailed mechanisms in ICH remain mainly unclear. In this study, BV2 cells with thrombin exposure were used to investigate the role of NLRP3 inflammasome in thrombin-induced brain injury. We used western blot to detect NLRP3 inflammasome activation and the expression of thioredoxin binding protein (TXNIP), DCFH-DA to investigate intracellular reactive oxygen species (ROS), flow cytometry to analyze apoptosis. Our results showed that ROS inhibitor N-acetyl-l-cysteine (NAC) suppressed the upregulation of intracellular ROS and TXNIP expression. Furthermore, the cell apoptosis and expression of apoptotic protein were significantly attenuated after treatment of thrombin with NAC or NLRP3 antagonist (MCC950). Thrombin activates ROS/TXNIP/NLRP3 signaling in BV2 cells, which may indicate a mechanism that pro-inflammatory and pro-apoptotic contributes to the development of ICH.
Neuroreport | 2015
Qianqian He; Lei Bao; Jeffrey Zimering; Kun Zan; Zuohui Zhang; Hongjuan Shi; Jie Zu; Xinxin Yang; Fang Hua; Xinchun Ye; Guiyun Cui
(−)-Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of green tea, has anti-inflammatory and antioxidant properties and provides neuroprotection against central nervous system diseases. Yet, it is not known whether EGCG may be neuroprotective against intracerebral hemorrhage. In this study, we used a simplified in-vitro model of thrombin neurotoxicity to test whether EGCG provides neuroprotection against thrombin-associated toxicity. Exposure of primary cortical neurons to thrombin (100 U/ml) caused dose-dependent and time-dependent cytotoxicity. Cell Counting Kit 8 and lactate dehydrogenase were used to monitor cell viability after exposure of neurons to thrombin or EGCG and after EGCG pretreatment. Flow cytometric analysis and western blotting demonstrated that thrombin-induced neuron degeneration occurs through apoptosis. A concentration of 25 &mgr;M EGCG significantly abolished thrombin-induced toxicity and prevented apoptosis by suppressing c-Jun-N-terminal kinase (JNK) phosphorylation, and the JNK inhibitor SP600125 reduced thrombin-induced caspase 3 activation and apoptosis. These data suggest that EGCG may have protective effects against thrombin-induced neuroapoptosis by inhibiting the activation of JNK, leading to caspase 3 cleavage. EGCG is a novel candidate neuroprotective agent against intracerebral hemorrhage-induced neurotoxicity.
Experimental Neurology | 2015
Xinxin Yang; Hui Zhao; Hongjuan Shi; Xiaoying Wang; Shenyang Zhang; Zunsheng Zhang; Jie Zu; Wei Zhang; Xia Shen; Guiyun Cui; Fang Hua
Levodopa (L-dopa) remains the most effective drug in the treatment of Parkinsons disease (PD). However, L-dopa-induced dyskinesia (LID) has hindered its use for PD patients. The mechanisms of LID are not fully understood. Substance P (SP) receptor antagonist has been shown to reduce parkinsonism in animal models of PD, and ameliorate LID in PD rats. But the concrete mechanism is not fully understood. To address this issue, we produced a rat model of PD using 6-hydroxydompamine (6-OHDA) injections, and valid PD rats were intranigrally administrated with different doses of SP receptor antagonist LY303870 (5 nmol/day, 10 nmol/day and 20 nmol/day) following L-dopa (6 mg/kg/day, i.p.) plus benserazide (12 mg/kg/day, i.p.) for 23 days. We found that nigral SP levels were increased on days 3, 7 and 14 and decreased on day 21 after 6-hydroxydompamine lesions. But nigral SP levels kept increasing after repeated L-dopa administration in PD rats. Intranigral administration of low and moderate LY303870 reduced abnormal involuntary movements (AIMs) while improving motor deficits in PD rats treated with L-dopa plus benserazide. Microdialysis revealed that LY303870 (10 nmol/day) treatment attenuated the increase of striatal dopamine and the reduction of γ-aminobutyric acid in ventromedial thalamus of PD rats primed with L-dopa. Additionally, LY303870 (10 nmol/day) treatment prior to L-dopa administration reduced the phosphorylated levels of dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein of 32 kDa at Thr 34 and extracellular signal-regulated kinases 1/2 as well as the levels of activity-regulated cytoskeleton-associated protein and Penk in L-dopa-primed PD rats. Taken together, these data showed that low and moderate SP receptor antagonists LY303870 could ameliorate LID via neurokinin 1 receptor without affecting therapeutic effect of L-dopa.
Brain Research Bulletin | 2014
Xiaoying Wang; Guiyun Cui; Xinxin Yang; Zunsheng Zhang; Hongjuan Shi; Jie Zu; Fang Hua; Xia Shen
Parkinsons disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Neurotrophic factors, such as glial cell derived neurotrophic factor (GDNF), have been shown to provide a neuroprotective effect in PD rats. We have previously reported that ultrasound-induced lipid-coated GDNF microspheres, which release GDNF in a sustained manner after low frequency ultrasound stimulation, can reduce hypoxic-ischemic injury in neonatal rats. In the present study, we investigated whether lipid-coated GDNF microspheres can provide a neuroprotective effect in a rat model of PD. After a rat model of PD was produced by 6-hydroxydompamine (6-OHDA) injections, lipid-coated GDNF microspheres (1.5mg/kg) were injected into the striatum of PD rats. We found that GDNF levels were increased in the striatum of PD rats after lipid-coated GDNF microspheres administration following low frequency ultrasound stimulation (20kHz, 5min per day, daily for 4 weeks). Moreover, GDNF microspheres reduced apomorphine-induced rotations, and increased striatal dopamine and nigral tyrosine hydroxylase (TH) levels in PD rats. Additionally, GDNF microspheres reduced caspase-3, tumor necrosis factor-alpha, matrix metalloproteinase 9 (MMP-9) and OX-6 levels induced by 6-OHDA injections in PD rats. These data indicated that lipid-coated GDNF microspheres can provide a neuroprotective effect in PD rats.
Neuropsychiatric Disease and Treatment | 2013
Guiyun Cui; Xinxin Yang; Xiaoying Wang; Zunsheng Zhang; Xuanye Yue; Hongjuan Shi; Xia Shen
Background Chronic administration of levodopa in Parkinson’s disease leads to debilitating involuntary movements, termed levodopa-induced dyskinesia (LID). The pathogenesis of LID is poorly understood. Previous research has shown that histamine H2 receptors are highly expressed in the input (striatum) and output (globus pallidus, substantia nigra) regions of the basal ganglia, particularly in the GABAergic striatopallidal and striatonigral pathways. Therefore, a histamine H2 receptor antagonist could be used to reduce LID. In the present work, we investigated whether ranitidine has the potential to diminish LID in rats with dyskinesia and explored the underlying mechanisms involved. Methods A rat model of PD was induced by 6-hydroxydopamine. Valid PD rats were then treated with levodopa (25 mg/kg, intraperitoneally) and benserazide (12.5 mg/kg, intraperitoneally) for 21 days to induce a rat model of LID. The acute and chronic effects of administration of ranitidine at different doses (5 mg/kg, 10 mg/kg, and 20 mg/kg) on abnormal involuntary movements, levodopa-induced rotations, and the forelimb adjusting steps test were investigated in LID rats. The chronic effect of ranitidine (10 mg/kg) on the expression of Arc and proenkephalin was also evaluated. Results Levodopa elicited increased dyskinesia in PD rats. Acute ranitidine treatment had no effect on LID, but chronic ranitidine administration (10 mg/kg, 20 mg/kg) reduced LID in rats with dyskinesia. Importantly, levodopa-induced rotations were not affected by chronic treatment with ranitidine. In addition, chronic ranitidine (10 mg/kg, 20 mg/kg) significantly improved stepping of the lesioned forepaw. Real-time polymerase chain reaction showed that Arc and proenkephalin levels were reduced by chronic ranitidine (10 mg/kg) in dyskinetic rats. Conclusion These data indicate that ranitidine is a good adjunct for reducing LID in rats with dyskinesia. Inhibition of dopamine D1-mediated activation in the medium spiny neurons may account for the antidyskinetic effects of ranitidine in rats with dyskinesia.
Toxicology Mechanisms and Methods | 2017
Lei Bao; Jie Zu; Qianqian He; Hui Zhao; Su Zhou; Xinchun Ye; Xinxin Yang; Kun Zan; Zuohui Zhang; Hongjuan Shi; Guiyun Cui
Abstract Context: Studies have shown that thrombin activation played a central role in cell injuries associated with intracerebral hemorrhage (ICH). Objective: Here, our study investigated the cytotoxicity of thrombin on neurons, and determined the involvement of JNK pathways in thrombin-induced neuronal apoptosis. Materials and methods: Primary cultured neurons were treated with different doses of thrombin. Some neurons were given either SP600125 or vehicle. LDH release assay and flow cytometry were used to measure neuronal apoptosis caused by thrombin. The activation of JNK and capases-3 were measured by Western blot. Results: Our results showed large doses of thrombin that increased the LDH release, the level of cleaved caspase-3 and apoptosis rate of neurons. JNK was activated by thrombin in a time-dependent manner. Administration of SP600125 protects neurons from thrombin-induced apoptosis. Conclusion: These data indicate that the activation of JNK is crucial for thrombin-induced neuronal apoptosis, and inhibition of JNK may be a potential therapeutic target for ICH.
Somatosensory and Motor Research | 2017
Hafiz Khuram Raza; Jia Jing; Guiyun Cui; Xiaoqian Liang; Fang Hua; Zunsheng Zhang; Hai Tang; Hongjuan Shi; Hao Chen
Abstract Our report involves a case of hemichorea caused by the nonketotic hyperosmolar state. We have analyzed the clinical data and relevant features of a patient who presented herself to the Affiliated Hospital of Xuzhou Medical University. The patient had unilateral involuntary movements for 1 month. We discovered that her blood glucose levels were very high. The patient underwent computed tomography (CT), magnetic resonance imaging (MRI), and magnetic resonance angiography (MRA), indicating right basal ganglia lesion. Control of the patient’s blood glucose plus supportive treatment resulted in a significant improvement of her clinical state.
British Journal of Neurosurgery | 2017
Hao Chen; Hafiz Khuram Raza; Hongjuan Shi; Jienan Zhu; Guiyun Cui
Abstract Our case report involves a Chinese patient who was presented to our hospital with the chief complaint of dizziness and double vision for one week. He was diagnosed with small cell carcinoma of lung in the past. The patient undertook various test at our hospital. His MR scan revealed an intraventricular metastasis from small cell carcinoma of lung which is very rare. We have analyzed the clinical data of this patient and related literature. We report this case to increase the awareness of this rare metastasis of small cell carcinoma of lung.