Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongjun Chao is active.

Publication


Featured researches published by Hongjun Chao.


Applied Microbiology and Biotechnology | 2014

The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866

Yan-Fei Chen; Hongjun Chao; Ning-Yi Zhou

Pseudomonas putida NCIMB 9866 utilizes p-cresol or 2,4-xylenol as a sole carbon and energy source. Enzymes catalyzing the oxidation of the para-methyl group of p-cresol have been studied in detail. However, those responsible for the oxidation of the para-methyl group in 2,4-xylenol catabolism are still not reported. In this study, real-time quantitative PCR analysis indicated pchC- and pchF-encoded p-cresol methylhydroxylase (PCMH) and pchA-encoded p-hydroxybenzaldehyde dehydrogenase (PHBDD) in p-cresol catabolism were also likely involved in the catabolism of 2,4-xylenol. Enzyme activity assays and intermediate identification indicated that the PCMH and PHBDD catalyzed the oxidations of 2,4-xylenol to 4-hydroxy-3-methylbenzaldehyde and 4-hydroxy-3-methylbenzaldehyde to 4-hydroxy-3-methylbenzoic acid, respectively. Furthermore, the PCMH-encoding gene pchF was found to be necessary for the catabolism of 2,4-xylenol, whereas the PHBDD-encoding gene pchA was not essential for the catabolism by gene knockout and complementation. Analyses of the maximum specific growth rate (μm) and specific activity of the gene-knockout strain to different intermediates revealed the presence of other enzyme(s) with PHBDD activity in strain 9866. However, PHBDD played a major role in the catabolism of 2,4-xylenol in contrast to the other enzyme(s).


Applied and Environmental Microbiology | 2015

Transcriptional Activation of Multiple Operons Involved in para-Nitrophenol Degradation by Pseudomonas sp. Strain WBC-3

Wen-Mao Zhang; Jun-Jie Zhang; Xuan Jiang; Hongjun Chao; Ning-Yi Zhou

ABSTRACT Pseudomonas sp. strain WBC-3 utilizes para-nitrophenol (PNP) as a sole carbon and energy source. The genes involved in PNP degradation are organized in the following three operons: pnpA, pnpB, and pnpCDEFG. How the expression of the genes is regulated is unknown. In this study, an LysR-type transcriptional regulator (LTTR) is identified to activate the expression of the genes in response to the specific inducer PNP. While the LTTR coding gene pnpR was found to be not physically linked to any of the three catabolic operons, it was shown to be essential for the growth of strain WBC-3 on PNP. Furthermore, PnpR positively regulated its own expression, which is different from the function of classical LTTRs. A regulatory binding site (RBS) with a 17-bp imperfect palindromic sequence (GTT-N11-AAC) was identified in all pnpA, pnpB, pnpC, and pnpR promoters. Through electrophoretic mobility shift assays and mutagenic analyses, this motif was proven to be necessary for PnpR binding. This consensus motif is centered at positions approximately −55 bp relative to the four transcriptional start sites (TSSs). RBS integrity was required for both high-affinity PnpR binding and transcriptional activation of pnpA, pnpB, and pnpR. However, this integrity was essential only for high-affinity PnpR binding to the promoter of pnpCDEFG and not for its activation. Intriguingly, unlike other LTTRs studied, no changes in lengths of the PnpR binding regions of the pnpA and pnpB promoters were observed after the addition of the inducer PNP in DNase I footprinting.


Journal of Bacteriology | 2013

GenR, an IclR-Type Regulator, Activates and Represses the Transcription of gen Genes Involved in 3-Hydroxybenzoate and Gentisate Catabolism in Corynebacterium glutamicum

Hongjun Chao; Ning-Yi Zhou

The genes required for 3-hydroxybenzoate and gentisate catabolism in Corynebacterium glutamicum are closely clustered in three operons. GenR, an IclR-type regulator, can activate the transcription of genKH and genDFM operons in response to 3-hydroxybenzoate and gentisate, and it can repress its own expression. Footprinting analyses demonstrated that GenR bound to four sites with different affinities. Two GenR-binding sites (DFMn01 and DFMn02) were found to be located between positions --41 and --84 upstream of the --35 and --10 regions of the genDFM promoter, which was involved in positive regulation of genDFM transcription. The GenR binding site R-KHn01 (located between positions --47 and --16) overlapped the --35 region of the genKH promoter sequence and is involved in positive regulation of its transcription. The binding site R-KHn02, at which GenR binds to its own promoter, was found within a footprint extending from position --44 to --67. It appeared to be involved in negative regulation of the activity of the genR promoter. A consensus motif with a 5-bp imperfect palindromic sequence [ATTCC-N(7(5))-GGAAT] was identified among all four GenR binding sites and found to be necessary to GenR regulation through site-directed mutagenesis. The results reveal a new regulatory function of the IclR family in the catabolism of aromatic compounds.


Applied and Environmental Microbiology | 2013

mhpT Encodes an Active Transporter Involved in 3-(3-Hydroxyphenyl)Propionate Catabolism by Escherichia coli K-12

Ying Xu; Bing Chen; Hongjun Chao; Ning-Yi Zhou

ABSTRACT Escherichia coli K-12 utilizes 3-(3-hydroxyphenyl)propionate (3HPP) as a sole carbon and energy source. Among the genes in its catabolic cluster in the genome, mhpT was proposed to encode a hypothetical transporter. Since no transporter for 3HPP uptake has been identified, we investigated whether MhpT is responsible for 3HPP uptake. MhpT fused with green fluorescent protein was found to be located at the periphery of cells by confocal microscopy, consistent with localization to the cytoplasmic membrane. Gene knockout and complementation studies clearly indicated that mhpT is essential for 3HPP catabolism in E. coli K-12 W3110 at pH 8.2. Uptake assays with 14C-labeled substrates demonstrated that strain W3110 and strain W3110ΔmhpT containing recombinant MhpT specifically transported 3HPP but not benzoate, 3-hydroxybenzoate, or gentisate into cells. Energy dependence assays suggested that MhpT-mediated 3HPP transport was driven by the proton motive force. The change of Ala-272 of MhpT to a histidine, surprisingly, resulted in enhanced transport activity, and strain W3110ΔmhpT containing the MhpT A272H mutation had a slightly higher growth rate than the wild-type strain at pH 8.2. Hence, we demonstrated that MhpT is a specific 3HPP transporter and vital for E. coli K-12 W3110 growth on this substrate under basic conditions.


PLOS ONE | 2012

Biochemical and Molecular Characterization of the Gentisate Transporter GenK in Corynebacterium glutamicum

Ying Xu; Song-He Wang; Hongjun Chao; Shuang-Jiang Liu; Ning-Yi Zhou

Background Gentisate (2,5-dihydroxybenzoate) is a key ring-cleavage substrate involved in various aromatic compounds degradation. Corynebacterium glutamicum ATCC13032 is capable of growing on gentisate and genK was proposed to encode a transporter involved in this utilization by its disruption in the restriction-deficient mutant RES167. Its biochemical characterization by uptake assay using [14C]-labeled gentisate has not been previously reported. Methodology/Principal Findings In this study, biochemical characterization of GenK by uptake assays with [14C]-labeled substrates demonstrated that it specifically transported gentisate into the cells with V max and Km of 3.06±0.16 nmol/min/mg of dry weight and 10.71±0.11 µM respectively, and no activity was detected for either benzoate or 3-hydoxybenzoate. When GenK was absent in strain RES167 ΔgenK, it retained 85% of its original transport activity at pH 6.5 compared to that of strain RES167. However, it lost 79% and 88% activity at pH 7.5 and 8.0, respectively. A number of competing substrates, including 3-hydroxybenzoate, benzoate, protocatechuate and catechol, significantly inhibited gentisate uptake by more than 40%. Through site-directed mutagenesis, eight amino acid residues of GenK, Asp-54, Asp-57 and Arg-386 in the hydrophobic transmembrane regions and Arg-103, Trp-309, Asp-312, Arg-313 and Ile-317 in the hydrophilic cytoplasmic loops were shown to be important for gentisate transport. When conserved residues Asp-54 and Asp-57 respectively were changed to glutamate, both mutants retained approximately 50% activity and were able to partially complement the ability of strain RES167 ΔgenK to grow on gentisate. Conclusions/Significance Our results demonstrate that GenK is an active gentisate transporter in Corynebacterium glutamicum ATCC13032. The GenK-mediated gentisate transport was also shown to be a limiting step for the gentisate utilization by this strain. This enhances our understanding of gentisate transport in the microbial degradation of aromatic compounds.


Applied and Environmental Microbiology | 2016

Constitutive Expression of a Nag-Like Dioxygenase Gene through an Internal Promoter in the 2-Chloronitrobenzene Catabolism Gene Cluster of Pseudomonas stutzeri ZWLR2-1

Yi-Zhou Gao; Hong Liu; Hongjun Chao; Ning-Yi Zhou

ABSTRACT The gene cluster encoding the 2-chloronitrobenzene (2CNB) catabolism pathway in Pseudomonas stutzeri ZWLR2-1 is a patchwork assembly of a Nag-like dioxygenase (dioxygenase belonging to the naphthalene dioxygenase NagAaAbAcAd family from Ralstonia sp. strain U2) gene cluster and a chlorocatechol catabolism cluster. However, the transcriptional regulator gene usually present in the Nag-like dioxygenase gene cluster is missing, leaving it unclear how this cluster is expressed. The pattern of expression of the 2CNB catabolism cluster was investigated here. The results demonstrate that the expression was constitutive and not induced by its substrate 2CNB or salicylate, the usual inducer of expression in the Nag-like dioxygenase family. Reverse transcription-PCR indicated the presence of at least one transcript containing all the structural genes for 2CNB degradation. Among the three promoters verified in the gene cluster, P1 served as the promoter for the entire catabolism operon, but the internal promoters P2 and P3 also enhanced the transcription of the genes downstream. The P3 promoter, which was not previously defined as a promoter sequence, was the strongest of these three promoters. It drove the expression of cnbAcAd encoding the dioxygenase that catalyzes the initial reaction in the 2CNB catabolism pathway. Bioinformatics and mutation analyses suggested that this P3 promoter evolved through the duplication of an 18-bp fragment and introduction of an extra 132-bp fragment. IMPORTANCE The release of many synthetic compounds into the environment places selective pressure on bacteria to develop their ability to utilize these chemicals to grow. One of the problems that a bacterium must surmount is to evolve a regulatory device for expression of the corresponding catabolism genes. Considering that 2CNB is a xenobiotic that has existed only since the onset of synthetic chemistry, it may be a good example for studying the molecular mechanisms underlying rapid evolution in regulatory networks for the catabolism of synthetic compounds. The 2CNB utilizer Pseudomonas stutzeri ZWLR2-1 in this study has adapted itself to the new pollutant by evolving the always-inducible Nag-like dioxygenase into a constitutively expressed enzyme, and its expression has escaped the influence of salicylate. This may facilitate an understanding of how bacteria can rapidly adapt to the new synthetic compounds by evolving its expression system for key enzymes involved in the degradation of a xenobiotic.


Letters in Applied Microbiology | 2017

Simultaneous biodegradation of three mononitrophenol isomers by a tailor-made microbial consortium immobilized in sequential batch reactors

He Fu; Jun-Jie Zhang; Ying Xu; Hongjun Chao; Ning-Yi Zhou

The ortho‐nitrophenol (ONP)‐utilizing Alcaligenes sp. strain NyZ215, meta‐nitrophenol (MNP)‐utilizing Cupriavidus necator JMP134 and para‐nitrophenol (PNP)‐utilizing Pseudomonas sp. strain WBC‐3 were assembled as a consortium to degrade three nitrophenol isomers in sequential batch reactors. Pilot test was conducted in flasks to demonstrate that a mixture of three mononitrophenols at 0·5 mol l−1 each could be mineralized by this microbial consortium within 84 h. Interestingly, neither ONP nor MNP was degraded until PNP was almost consumed by strain WBC‐3. By immobilizing this consortium into polyurethane cubes, all three mononitrophenols were continuously degraded in lab‐scale sequential reactors for six batch cycles over 18 days. Total concentrations of ONP, MMP and PNP that were degraded were 2·8, 1·5 and 2·3 mol l−1 during this time course respectively. Quantitative real‐time PCR analysis showed that each member in the microbial consortium was relatively stable during the entire degradation process. This study provides a novel approach to treat polluted water, particularly with a mixture of co‐existing isomers.


Frontiers in Microbiology | 2017

PnpM, a LysR-Type Transcriptional Regulator Activates the Hydroquinone Pathway in para-Nitrophenol Degradation in Pseudomonas sp. Strain WBC-3

Jin-Pei Wang; Wen-Mao Zhang; Hongjun Chao; Ning-Yi Zhou

A LysR-type transcriptional regulator (LTTR), PnpR, has previously been shown to activate the transcription of operons pnpA, pnpB, and pnpCDEFG for para-nitrophenol (PNP) degradation in Pseudomonas sp. strain WBC-3. Further preliminary evidence suggested the possible presence of an LTTR additional binding site in the promoter region of pnpCDEFG. In this study, an additional LTTR PnpM, which shows 44% homology to PnpR, was determined to activate the expression of pnpCDEFG. Interestingly, a pnpM-deleted WBC-3 strain was unable to grow on PNP but accumulating hydroquinone (HQ), which is the catabolic product from PNP degradation by PnpAB and the substrate for PnpCD. Through electrophoretic mobility shift assays (EMSAs) and promoter activity detection, only PnpR was involved in the activation of pnpA and pnpB, but both PnpR and PnpM were involved in the activation of pnpCDEFG. DNase I footprinting analysis suggested that PnpR and PnpM shared the same DNA-binding regions of 27 bp in the pnpCDEFG promoter. In the presence of PNP, the protection region increased to 39 bp by PnpR and to 38 bp by PnpM. Our data suggested that both PnpR and PnpM were involved in activating pnpCDEFG expression, in which PNP rather than the substrate hydroquinone for PnpCD is the inducer. Thus, during the PNP catabolism in Pseudomonas sp. strain WBC-3, pnpA and pnpB operons for the initial two reactions were controlled by PnpR, while the third operon (pnpCDEFG) for HQ degradation was activated by PnpM and PnpR. This study builds upon our previous findings and shows that two LTTRs PnpR and PnpM are involved in the transcriptional activation of these three catabolic operons. Specifically, our identification that an LTTR, PnpM, regulates pnpCDEFG expression provides new insights in an intriguing regulation system of PNP catabolism that is controlled by two regulators.


Applied and Environmental Microbiology | 2014

Involvement of the Global Regulator GlxR in 3-Hydroxybenzoate and Gentisate Utilization by Corynebacterium glutamicum

Hongjun Chao; Ning-Yi Zhou

ABSTRACT Corynebacterium glutamicum is an industrially important producer of amino acids and organic acids, as well as an emerging model system for aromatic assimilation. An IclR-type regulator GenR has been characterized to activate the transcription of genDFM and genKH operons for 3-hydroxybenzoate and gentisate catabolism and represses its own expression. On the other hand, GlxR, a global regulator of the cyclic AMP (cAMP) receptor protein-fumarate nitrate reductase regulator (CRP-FNR) type, was also predicted to be involved in this pathway. In this study, electrophoretic mobility shift assays and footprinting analyses demonstrated that GlxR bound to three sites in the promoter regions of three gen operons. A combination of site-directed mutagenesis of the biding sites, promoter activity assay, and GlxR overexpression demonstrated that GlxR repressed their expression by binding these sites. One GlxR binding site (DFMx) was found to be located −13 to +8 bp upstream of the genDFM promoter, which was involved in negative regulation of genDFM transcription. The GlxR binding site R-KHx01 (located between positions −11 to +5) was upstream of the genKH promoter sequence and involved in negative regulation of its transcription. The binding site R-KHx02, at which GlxR binds to genR promoter to repress its expression, was found within a footprint extending from positions −71 to −91 bp. These results reveal that GlxR represses the transcription of all three gen operons and then contributes to the synchronization of their expression for 3-hydroxybenzoate and gentisate catabolism in collaboration with the specific regulator GenR.


Applied and Environmental Microbiology | 2016

HipH Catalyzes the Hydroxylation of 4-Hydroxyisophthalate to Protocatechuate in 2,4-Xylenol Catabolism by Pseudomonas putida NCIMB 9866

Hongjun Chao; Yan-Fei Chen; Ti Fang; Ying Xu; Wei E. Huang; Ning-Yi Zhou

ABSTRACT In addition to growing on p-cresol, Pseudomonas putida NCIMB 9866 is the only reported strain capable of aerobically growing on 2,4-xylenol, which is listed as a priority pollutant by the U.S. Environmental Protection Agency. Several enzymes involved in the oxidation of the para-methyl group, as well as the corresponding genes, have previously been reported. The enzyme catalyzing oxidation of the catabolic intermediate 4-hydroxyisophthalate to the ring cleavage substrate protocatechuate was also purified from strain NCIMB 9866, but its genetic determinant is still unavailable. In this study, the gene hipH, encoding 4-hydroxyisophthalate hydroxylase, from strain NCIMB 9866 was cloned by transposon mutagenesis. Purified recombinant HipH-His6 was found to be a dimer protein with a molecular mass of approximately 110 kDa. HipH-His6 catalyzed the hydroxylation of 4-hydroxyisophthalate to protocatechuate with a specific activity of 1.54 U mg−1 and showed apparent Km values of 11.40 ± 3.05 μM for 4-hydroxyisophthalate with NADPH and 11.23 ± 2.43 μM with NADH and similar Km values for NADPH and NADH (64.31 ± 13.16 and 72.76 ± 12.06 μM, respectively). The identity of protocatechuate generated from 4-hydroxyisophthalate hydroxylation by HipH-His6 has also been confirmed by high-performance liquid chromatography and mass spectrometry. Gene transcriptional analysis, gene knockout, and complementation indicated that hipH is essential for 2,4-xylenol catabolism but not for p-cresol catabolism in this strain. This fills a gap in our understanding of the gene that encodes a critical step in 2,4-xylenol catabolism and also provides another example of biochemical and genetic diversity of microbial catabolism of structurally similar compounds.

Collaboration


Dive into the Hongjun Chao's collaboration.

Top Co-Authors

Avatar

Ning-Yi Zhou

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ying Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun-Jie Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wen-Mao Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan-Fei Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bing Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

He Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin-Pei Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge