Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongli Dong is active.

Publication


Featured researches published by Hongli Dong.


IEEE Transactions on Industrial Electronics | 2013

Distributed H ∞ Filtering for a Class of Markovian Jump Nonlinear Time-Delay Systems Over Lossy Sensor Networks

Hongli Dong; Zidong Wang; Huijun Gao

This paper is concerned with the distributed H∞ filtering problem for a class of discrete-time Markovian jump nonlinear time-delay systems with deficient statistics of mode transitions. The system measurements are collected through a lossy sensor network subject to randomly occurring quantization errors and randomly occurring packet dropouts. The description of deficient statistics of mode transitions that account for known, unknown, and uncertain transition probabilities is comprehensive. A distributed filter design scheme is outlined by explicitly characterizing the filter gains in terms of some matrix inequalities. Simulation results demonstrate the effectiveness of the proposed filtering scheme.


IEEE Transactions on Signal Processing | 2011

Robust

Hongli Dong; Zidong Wang; Daniel W. C. Ho; Huijun Gao

This paper addresses the robust H∞ filtering problem for a class of discrete time-varying Markovian jump systems with randomly occurring nonlinearities and sensor saturation. Two kinds of transition probability matrices for the Markovian process are considered, namely, the one with polytopic uncertainties and the one with partially unknown entries. The nonlinear disturbances are assumed to occur randomly according to stochastic variables satisfying the Bernoulli distributions. The main purpose of this paper is to design a robust filter, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the time-varying Markovian jump systems in the presence of both the randomly occurring nonlinearities and the sensor saturation. Sufficient conditions are established for the existence of the desired filter satisfying the H∞ performance constraint in terms of a set of recursive linear matrix inequalities. Simulation results demonstrate the effectiveness of the developed filter design scheme.


IEEE Transactions on Signal Processing | 2010

{{\cal H}}_{\infty}

Hongli Dong; Zidong Wang; Huijun Gao

In this paper, the robust H∞ filtering problem is studied for a class of uncertain nonlinear networked systems with both multiple stochastic time-varying communication delays and multiple packet dropouts. A sequence of random variables, all of which are mutually independent but obey Bernoulli distribution, are introduced to account for the randomly occurred communication delays. The packet dropout phenomenon occurs in a random way and the occurrence probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval. The discrete-time system under consideration is also subject to parameter uncertainties, state-dependent stochastic disturbances and sector-bounded nonlinearities. We aim to design a linear full-order filter such that the estimation error converges to zero exponentially in the mean square while the disturbance rejection attenuation is constrained to a give level by means of the H∞ performance index. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as well as prescribed H∞ performance for the overall filtering error dynamics, in the presence of random delays, random dropouts, nonlinearities, and the parameter uncertainties. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs), and then the explicit expression is given for the desired filter parameters. Simulation results are employed to demonstrate the effectiveness of the proposed filter design technique in this paper.


systems man and cybernetics | 2012

Filtering for Markovian Jump Systems With Randomly Occurring Nonlinearities and Sensor Saturation: The Finite-Horizon Case

Hongli Dong; Zidong Wang; James Lam; Huijun Gao

This paper is concerned with the network-based robust fault detection problem for a class of uncertain discrete-time Takagi-Sugeno fuzzy systems with stochastic mixed time delays and successive packet dropouts. The mixed time delays comprise both the multiple discrete time delays and the infinite distributed delays. A sequence of stochastic variables is introduced to govern the random occurrences of the discrete time delays, distributed time delays, and successive packet dropouts, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fuzzy fault detection filter such that the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fuzzy fault detection filters, and then, the corresponding solvability conditions for the desired filter gains are established. In addition, the optimal performance index for the addressed robust fuzzy fault detection problem is obtained by solving an auxiliary convex optimization problem. An illustrative example is provided to show the usefulness and effectiveness of the proposed design method.


IEEE Transactions on Fuzzy Systems | 2010

Robust

Hongli Dong; Zidong Wang; Daniel W. C. Ho; Huijun Gao

In this paper, the robust H∞-control problem is investigated for a class of uncertain discrete-time fuzzy systems with both multiple probabilistic delays and multiple missing measurements. A sequence of random variables, all of which are mutually independent but obey the Bernoulli distribution, is introduced to account for the probabilistic communication delays. The measurement-missing phenomenon occurs in a random way. The missing probability for each sensor satisfies a certain probabilistic distribution in the interval. Here, the attention is focused on the analysis and design of H∞ fuzzy output-feedback controllers such that the closed-loop Takagi-Sugeno (T-S) fuzzy-control system is exponentially stable in the mean square. The disturbance-rejection attenuation is constrained to a given level by means of the H∞-performance index. Intensive analysis is carried out to obtain sufficient conditions for the existence of admissible output feedback controllers, which ensures the exponential stability as well as the prescribed H∞ performance. The cone-complementarity-linearization procedure is employed to cast the controller-design problem into a sequential minimization one that is solved by the semi-definite program method. Simulation results are utilized to demonstrate the effectiveness of the proposed design technique in this paper.


IEEE Transactions on Signal Processing | 2012

H_{\infty}

Hongli Dong; Zidong Wang; Huijun Gao

This paper is concerned with the distributed finite-horizon filtering problem for a class of time-varying systems over lossy sensor networks. The time-varying system (target plant) is subject to randomly varying nonlinearities (RVNs) caused by environmental circumstances. The lossy sensor network suffers from quantization errors and successive packet dropouts that are described in a unified framework. Two mutually independent sets of Bernoulli distributed white sequences are introduced to govern the random occurrences of the RVNs and successive packet dropouts. Through available output measurements from not only the individual sensor but also its neighboring sensors according to the given topology, a sufficient condition is established for the desired distributed finite-horizon filter to ensure that the prescribed average filtering performance constraint is satisfied. The solution of the distributed filter gains is characterized by solving a set of recursive linear matrix inequalities. A simulation example is provided to show the effectiveness of the proposed filtering scheme.


IEEE Transactions on Automatic Control | 2013

Filtering for a Class of Nonlinear Networked Systems With Multiple Stochastic Communication Delays and Packet Dropouts

Zidong Wang; Hongli Dong; Bo Shen; Huijun Gao

In this paper, a new H∞ filtering approach is developed for a class of discrete time-varying systems subject to missing measurements and quantization effects. The missing measurements are modeled via a diagonal matrix consisting of a series of mutually independent random variables satisfying certain probabilistic distributions on the interval [0,1] . The measured output is quantized by a logarithmic quantizer. Attention is focused on the design of a stochastic H∞ filter such that the H∞ estimation performance is guaranteed over a given finite-horizon in the simultaneous presence of probabilistic missing measurements, quantization effects as well as external non-Gaussian disturbances. A necessary and sufficient condition is first established for the existence of the desired time-varying filters in virtue of the solvability of certain coupled recursive Riccati difference equations (RDEs). Owing to its recursive nature, the proposed RDE approach is shown to be suitable for online application without the need of increasing the problem size. The simulation experiment is carried out for the mobile robot localization problem with non-Gaussian disturbances, missing measurements and quantization effects. The effectiveness of the proposed method is demonstrated in the numerical example.


IEEE Transactions on Circuits and Systems | 2012

Fuzzy-Model-Based Robust Fault Detection With Stochastic Mixed Time Delays and Successive Packet Dropouts

Hongli Dong; Zidong Wang; Huijun Gao

This paper addresses the fault detection problem for discrete-time Markovian jump systems with incomplete knowledge of transition probabilities, randomly varying nonlinearities and sensor saturations. For the Markovian mode jumping, the transition probability matrix is allowed to have partially unknown entries, while the cases with completely known or completely unknown transition probabilities are also investigated as two special cases. The randomly varying nonlinearities and the sensor saturations are introduced to reflect the limited capacity of the communication networks resulting from the noisy environment, probabilistic communication failures, measurements of limited amplitudes, etc. Two energy norm indices are used for the fault detection problem in order to account for, respectively, the restraint of disturbance and the sensitivity of faults. The purpose of the problem addressed is to design an optimized fault detection filter such that 1) the fault detection dynamics is stochastically stable; 2) the effect from the exogenous disturbance on the residual is attenuated with respect to a minimized H∞ -norm; and 3) the sensitivity of the residual to the fault is enhanced by means of a maximized H∞-norm. The characterization of the gains of the desired fault detection filters is derived in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. Finally, a simulation example is employed to show the effectiveness of the fault detection filtering scheme proposed in this paper.


IEEE Transactions on Signal Processing | 2010

Robust

Hongli Dong; Zidong Wang; Daniel W. C. Ho; Huijun Gao

This paper is concerned with the robust H ∞ finite-horizon filtering problem for a class of uncertain nonlinear discrete time-varying stochastic systems with multiple missing measurements and error variance constraints. All the system parameters are time-varying and the uncertainty enters into the state matrix. The measurement missing phenomenon occurs in a random way, and the missing probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval . The stochastic nonlinearities under consideration here are described by statistical means which can cover several classes of well-studied nonlinearities. Sufficient conditions are derived for a finite-horizon filter to satisfy both the estimation error variance constraints and the prescribed H ∞ performance requirement. These conditions are expressed in terms of the feasibility of a series of recursive linear matrix inequalities (RLMIs). Simulation results demonstrate the effectiveness of the developed filter design scheme.


Automatica | 2014

H_{\infty }

Hongli Dong; Zidong Wang; Steven X. Ding; Huijun Gao

This paper is concerned with the finite-horizon estimation problem of randomly occurring faults for a class of nonlinear systems whose parameters are all time-varying. The faults are assumed to occur in a random way governed by two sets of Bernoulli distributed white sequences. The stochastic nonlinearities entering the system are described by statistical means that can cover several classes of well-studied nonlinearities. The aim of the problem is to estimate the random faults, over a finite horizon, such that the influence from the exogenous disturbances onto the estimation errors is attenuated at the given level quantified by an H ∞ -norm in the mean square sense. By using the completing squares method and stochastic analysis techniques, necessary and sufficient conditions are established for the existence of the desired finite-horizon H ∞ fault estimator whose parameters are then obtained by solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the effectiveness of the proposed fault estimation method.

Collaboration


Dive into the Hongli Dong's collaboration.

Top Co-Authors

Avatar

Zidong Wang

Brunel University London

View shared research outputs
Top Co-Authors

Avatar

Huijun Gao

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Hou

Northeast Petroleum University

View shared research outputs
Top Co-Authors

Avatar

Fuad E. Alsaadi

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Derui Ding

University of Shanghai for Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Fei Han

Northeast Petroleum University

View shared research outputs
Top Co-Authors

Avatar

Jiahui Li

Northeast Petroleum University

View shared research outputs
Top Co-Authors

Avatar

Jun Hu

Harbin University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Weijian Ren

Northeast Petroleum University

View shared research outputs
Researchain Logo
Decentralizing Knowledge