Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongling Jiang is active.

Publication


Featured researches published by Hongling Jiang.


Cell Research | 2008

Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses.

Qingyun Bu; Hongling Jiang; Changbao Li; Qingzhe Zhai; Jie Zhang; Xiaoyan Wu; Jiaqiang Sun; Qi Xie; Chuanyou Li

Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055 might function as transcription activators to regulate JA-induced expression of defense genes. The role of the two NAC genes in JA signaling was examined with the anac019 anac055 double mutant and with transgenic plants overexpressing ANAC019 or ANAC055. The anac019 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression. That the JA-induced expression of the two NAC genes depends on the function of COI1 and AtMYC2, together with the finding that overexpression of ANAC019 partially rescued the JA-related phenotype of the atmyc2-2 mutant, has led us to a hypothesis that the two NAC proteins act downstream of AtMYC2 to regulate JA-signaled defense responses. Further evidence to substantiate this idea comes from the observation that the response of the anac019 anac055 double mutant to a necrotrophic fungus showed high similarity to that of the atmyc2-2 mutant.


The Plant Cell | 2009

Arabidopsis ASA1 Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation

Jiaqiang Sun; Yingxiu Xu; Songqing Ye; Hongling Jiang; Qian Chen; Fang Liu; Wenkun Zhou; Rong Chen; Xugang Li; Olaf Tietz; Xiaoyan Wu; Jerry D. Cohen; Klaus Palme; Chuanyou Li

Plant roots show an impressive degree of plasticity in adapting their branching patterns to ever-changing growth conditions. An important mechanism underlying this adaptation ability is the interaction between hormonal and developmental signals. Here, we analyze the interaction of jasmonate with auxin to regulate lateral root (LR) formation through characterization of an Arabidopsis thaliana mutant, jasmonate-induced defective lateral root1 (jdl1/asa1-1). We demonstrate that, whereas exogenous jasmonate promotes LR formation in wild-type plants, it represses LR formation in jdl1/asa1-1. JDL1 encodes the auxin biosynthetic gene ANTHRANILATE SYNTHASE α1 (ASA1), which is required for jasmonate-induced auxin biosynthesis. Jasmonate elevates local auxin accumulation in the basal meristem of wild-type roots but reduces local auxin accumulation in the basal meristem of mutant roots, suggesting that, in addition to activating ASA1-dependent auxin biosynthesis, jasmonate also affects auxin transport. Indeed, jasmonate modifies the expression of auxin transport genes in an ASA1-dependent manner. We further provide evidence showing that the action mechanism of jasmonate to regulate LR formation through ASA1 differs from that of ethylene. Our results highlight the importance of ASA1 in jasmonate-induced auxin biosynthesis and reveal a role for jasmonate in the attenuation of auxin transport in the root and the fine-tuning of local auxin distribution in the root basal meristem.


The Plant Cell | 2011

The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses PLETHORA Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in Arabidopsis

Qian Chen; Jiaqiang Sun; Qingzhe Zhai; Wenkun Zhou; Linlin Qi; Li Xu; Bao Wang; Rong Chen; Hongling Jiang; Jing Qi; Xugang Li; Klaus Palme; Chuanyou Li

This study investigates the mechanisms underlying jasmonate-induced inhibition of primary root growth. Jasmonate inhibits the expression of two AP2-domain transcription factors, PLETHORA1 and 2, in a MYC2-dependent fashion. MYC2 is suggested to integrate the jasmonate and auxin pathways during the maintenance of the root stem cell niche. The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin.


The Plant Cell | 2012

The Arabidopsis Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interacting with the MYC2 and ABI5 Transcription Factors

Rong Chen; Hongling Jiang; Lin Li; Qingzhe Zhai; Linlin Qi; Wenkun Zhou; Xiaoqiang Liu; Hongmei Li; Wenguang Zheng; Jiaqiang Sun; Chuanyou Li

This work describes that the MED25 subunit of the Arabidopsis thaliana Mediator complex positively regulates JA-mediated gene expression through interacting with the transcription factor MYC2. It also describes that MED25 negatively regulates ABA-mediated gene expression through interacting with the transcription factor ABI5. Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabidopsis thaliana Mediator in regulating jasmonate- and abscisic acid (ABA)–triggered gene transcription. We show that during jasmonate signaling, MED25 physically associates with the basic helix-loop-helix transcription factor MYC2 in promoter regions of MYC2 target genes and exerts a positive effect on MYC2-regulated gene transcription. We also show that MED25 physically associates with the basic Leu zipper transcription factor ABA-INSENSITIVE5 (ABI5) in promoter regions of ABI5 target genes and shows a negative effect on ABI5-regulated gene transcription. Our results reveal that underlying the distinct effects of MED25 on jasmonate and ABA signaling, the interaction mechanisms of MED25 with MYC2 and ABI5 are different. These results highlight that the MED25 subunit of the Arabidopsis Mediator regulates a wide range of signaling pathways through selectively interacting with specific transcription factors.


The Plant Cell | 2010

Arabidopsis Tyrosylprotein Sulfotransferase Acts in the Auxin/PLETHORA Pathway in Regulating Postembryonic Maintenance of the Root Stem Cell Niche

Wenkun Zhou; Lirong Wei; Jian Xu; Qingzhe Zhai; Hongling Jiang; Rong Chen; Qian Chen; Jiaqiang Sun; Jinfang Chu; Lihuang Zhu; Chun-Ming Liu; Chuanyou Li

Arabidopsis tyrosylprotein sulfotransferase (TPST) maintains the postembryonic root stem cell niche by regulating basal- and auxin-induced expression of the PLETHORA stem cell transcription factor. TPST-mediated activation of a group of sulfated peptides known as root meristem growth factors provides a link between the phytohormone auxin and PLETHORA in root stem cell niche maintenance. Recent identification of the Arabidopsis thaliana tyrosylprotein sulfotransferase (TPST) and a group of Tyr-sulfated peptides known as root meristem growth factors (RGFs) highlights the importance of protein Tyr sulfation in plant growth and development. Here, we report the action mechanism of TPST in maintenance of the root stem cell niche, which in the Arabidopsis root meristem is an area of four mitotically inactive quiescent cells plus the surrounding mitotically active stem cells. Mutation of TPST leads to defective maintenance of the root stem cell niche, decreased meristematic activity, and stunted root growth. We show that TPST expression is positively regulated by auxin and that mutation of this gene affects auxin distribution by reducing local expression levels of several PIN genes and auxin biosynthetic genes in the stem cell niche region. We also show that mutation of TPST impairs basal- and auxin-induced expression of the PLETHORA (PLT) stem cell transcription factor genes and that overexpression of PLT2 rescues the root meristem defects of the loss-of-function mutant of TPST. Together, these results support that TPST acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1 and PLT2. TPST-dependent sulfation of RGFs provides a link between auxin and PLTs in regulating root stem cell niche maintenance.


Molecular Plant | 2011

Systemin/Jasmonate-Mediated Systemic Defense Signaling in Tomato

Jiaqiang Sun; Hongling Jiang; Chuanyou Li

Wound-inducible proteinase inhibitors (PIs) in tomato plants provide a useful model system to elucidate the signal transduction pathways that regulate systemic defense response. Among the proposed intercellular signals for wound-induced PIs expression are the peptide systemin and the oxylipin-derived phytohormone jasmonic acid (JA). An increasing body of evidence indicates that systemin and JA work in the same signaling pathway to activate the expression of PIs and other defense-related genes. However, relatively less is known about how these signals interact to promote cell-to-cell communication over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to study, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for defense gene expression. Recently, grafting experiments with tomato mutants defective in JA biosynthesis and signaling provide new evidence that JA, rather than systemin, functions as the systemic wound signal, and that the biosynthesis of JA is regulated by the peptide systemin. Further understanding of the systemin/JA signaling pathway promises to provide new insights into the basic mechanisms governing plant defense to biotic stress.


New Phytologist | 2011

Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein.

Jiaqiang Sun; Qian Chen; Linlin Qi; Hongling Jiang; Shuyu Li; Yingxiu Xu; Fang Liu; Wenkun Zhou; Jianwei Pan; Xugang Li; Klaus Palme; Chuanyou Li

The subcellular distribution of the PIN-FORMED (PIN) family of auxin transporters plays a critical role in auxin gradient-mediated developmental processes, including lateral root formation and gravitropic growth. Here, we report two distinct aspects of CORONATINE INSENSITIVE 1 (COI1)- and AUXIN RESISTANT 1 (AXR1)-dependent methyl jasmonate (MeJA) effects on PIN2 subcellular distribution: at lower concentration (5 μM), MeJA inhibits PIN2 endocytosis, whereas, at higher concentration (50 μM), MeJA reduces PIN2 accumulation in the plasma membrane. We show that mutations of ASA1 (ANTHRANILATE SYNTHASE a1) and the TIR1/AFBs (TRANSPORT INHIBITOR RESPONSE 1/AUXIN-SIGNALING F-BOX PROTEINs) auxin receptor genes impair the inhibitory effect of 5 μM MeJA on PIN2 endocytosis, suggesting that a lower concentration of jasmonate inhibits PIN2 endocytosis through interaction with the auxin pathway. In contrast, mutations of ASA1 and the TIR1/AFBs auxin receptor genes enhance, rather than impair, the reduction effect of 50 μM MeJA on the plasma membrane accumulation of PIN2, suggesting that this action of jasmonate is independent of the auxin pathway. In addition to the MeJA effects on PIN2 endocytosis and plasma membrane residence, we also show that MeJA alters lateral auxin redistribution on gravi-stimulation, and therefore impairs the root gravitropic response. Our results highlight the importance of jasmonate-auxin interaction in the coordination of plant growth and the adaptation response.


Cell Research | 2009

The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses

Wenxing Liang; Changbao Li; Fang Liu; Hongling Jiang; Shuyu Li; Jiaqiang Sun; Xiaoyan Wu; Chuanyou Li

Messenger RNA (mRNA) turnover in eukaryotic cells begins with shortening of the poly (A) tail at the 3′ end, a process called deadenylation. In yeast, the deadenylation reaction is predominantly mediated by CCR4 and CCR4-associated factor 1 (CAF1), two components of the well-characterised protein complex named CCR4-NOT. We report here that AtCAF1a and AtCAF1b, putative Arabidopsis homologs of the yeast CAF1 gene, partially complement the growth defect of the yeast caf1 mutant in the presence of caffeine or at high temperatures. The expression of AtCAF1a and AtCAF1b is induced by multiple stress-related hormones and stimuli. Both AtCAF1a and AtCAF1b show deadenylation activity in vitro and point mutations in the predicted active sites disrupt this activity. T-DNA insertion mutants disrupting the expression of AtCAF1a and/or AtCAF1b are defective in deadenylation of stress-related mRNAs, indicating that the two AtCAF1 proteins are involved in regulated mRNA deadenylation in vivo. Interestingly, the single and double mutants of AtCAF1a and AtCAF1b show reduced expression of pathogenesis-related (PR) genes PR1 and PR2 and are more susceptible to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection, whereas transgenic plants over-expressing AtCAF1a show elevated expression of PR1 and PR2 and increased resistance to the same pathogen. Our results suggest roles of the AtCAF1 proteins in regulated mRNA deadenylation and defence responses to pathogen infections.


Plant Molecular Biology | 2007

The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis

Hongmei Li; Jiaqiang Sun; Yingxiu Xu; Hongling Jiang; Xiaoyan Wu; Chuanyou Li

The phytohormone ABA was known to play a vital role in modulating plant responses to drought stress. Here, we report that a nuclear-localized basic helix-loop-helix (bHLH)-type protein, AtAIB, positively regulates ABA response in Arabidopsis. The expression of AtAIB was transitorily induced by ABA and PEG, although its transcripts were accumulated in various organs. We provided evidence showing that AtAIB has transcriptional activation activity in yeast. Knockdown of AtAIB expression caused reduced sensitivity to ABA, whereas overexpression of this gene led to elevated sensitivity to ABA in cotyledon greening and seedling root growth. Furthermore, soil-grown plants overexpressing AtAIB showed increased drought tolerance. Taken together, these results suggested that AtAIB functions as a transcription activator involved in the regulation of ABA signaling in Arabidopsis.


The Plant Cell | 2014

Closely Related NAC Transcription Factors of Tomato Differentially Regulate Stomatal Closure and Reopening during Pathogen Attack

Minmin Du; Qingzhe Zhai; Lei Deng; Shuyu Li; Hongshuang Li; Liuhua Yan; Zhuo Huang; Bao Wang; Hongling Jiang; Tingting Huang; Chang Bao Li; Jianing Wei; Li Kang; Jingfu Li; Chuanyou Li

This work reports the distinct mechanisms of two homologous NAC proteins of tomato, JA2 and JA2L, in regulating Pseudomonas syringae pv tomato DC3000–induced stomatal movement. Whereas JA2 acts in abscisic acid (ABA)–mediated stomatal closure by promoting ABA biosynthesis, JA2L functions in jasmonate/coronatine–mediated stomatal reopening by suppressing salicylic acid accumulation. To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.

Collaboration


Dive into the Hongling Jiang's collaboration.

Top Co-Authors

Avatar

Chuanyou Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiaqiang Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Changbao Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qian Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qingzhe Zhai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fang Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rong Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuyu Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenkun Zhou

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge