Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongming Pan is active.

Publication


Featured researches published by Hongming Pan.


Cancer Letters | 2014

p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents

Xinbing Sui; Na Kong; Li Ye; Weidong Han; Jichun Zhou; Qin Zhang; Chao He; Hongming Pan

The Mitogen Activated Protein Kinase (MAPK) signaling plays a critical role in the outcome and the sensitivity to anticancer therapies. Activated MAPK can transmit extracellular signals to regulate cell growth, proliferation, differentiation, migration, apoptosis and so on. Apoptosis as well as macroautophagy (hereafter referred to as autophagy) can be induced by extracellular stimuli such the treatment of chemotherapeutic agents, resulting in different cell response to these drugs. However, the molecular mechanisms mediating these two cellular processes remain largely unknown. Recently, several studies provide new insights into p38 and JNK MAPK pathways function in the control of the balance of autophagy and apoptosis in response to genotoxic stress. Our increased understanding of the role of p38 and JNK MAPK pathways in regulating the balance of autophagy and apoptosis will hopefully provide prospective strategies for cancer therapy.


PLOS ONE | 2011

EGFR Tyrosine Kinase Inhibitors Activate Autophagy as a Cytoprotective Response in Human Lung Cancer Cells

Weidong Han; Hongming Pan; Yan Chen; Jie Sun; Yanshan Wang; Jing Li; Weiting Ge; Lifeng Feng; Xiaoying Lin; Xiaojia Wang; Xian Wang; Hongchuan Jin

Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer.


PLOS ONE | 2011

Autophagy Inhibition Enhances Daunorubicin-Induced Apoptosis in K562 Cells

Weidong Han; Jie Sun; Lifeng Feng; Kaifeng Wang; Da Li; Qin Pan; Yan Chen; Wei Jin; Xian Wang; Hongming Pan; Hongchuan Jin

Anthracycline daunorubicin (DNR) is one of the major antitumor agents widely used in the treatment of myeloid leukemia. Unfortunately, the clinical efficacy of DNR was limited because of its cytotoxity at high dosage. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether DNR can activate to impair the sensitivity of cancer cells remains unknown. Here, we first report that DNR can induce a high level of autophagy, which was associated with the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Moreover, cell death induced by DNR was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting Atg5 and Atg7, the most important components for the formation of autophagosome. In conclusion, we found that DNR can induce cytoprotective autophagy by activation of ERK in myeloid leukemia cells. Autophagy inhibition thus represents a promising approach to improve the efficacy of DNR in the treatment of patients with myeloid leukemia.


Autophagy | 2015

The role of STAT3 in autophagy.

Liangkun You; Zhanggui Wang; Hongsen Li; Jiawei Shou; Zhao Jing; Jiansheng Xie; Xinbing Sui; Hongming Pan; Weidong Han

Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the classic autophagy model and also into cancer therapy, especially for the emerging targeted therapy, because a series of targeted agents execute antitumor activities via blocking STAT3 signaling, which inevitably affects the autophagy pathway. Here, we review several of the representative studies and the current understanding in this particular field.


Cancer Letters | 2015

Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers

Zhao Jing; Weidong Han; Xinbing Sui; Jiansheng Xie; Hongming Pan

Autophagy is a tightly regulated intracellular self-digestive process involving the lysosomal degradation of cytoplasmic organelles and proteins. A number of studies have shown that autophagy is dysregulated in cancer initiation and progression, or cancer cells under various stress conditions. As a catabolic pathway conserved among eukaryotes, autophagy is regulated by the autophagy related genes and pathways. MicroRNAs (miRNAs) are small, non-coding endogenous RNAs that may regulate almost every cellular process including autophagy. And autophagy is also involved in the regulation of miRNAs expression and homeostasis. Here we reviewed some literatures on the interaction of miRNAs with autophagy and the application of miRNAs-mediated autophagic networks as a promising target in pre-clinical cancer models. Furthermore, strategies of miRNAs delivery for miRNAs-based anti-cancer therapy will also be summarized and discussed.


Journal of Gastroenterology and Hepatology | 2014

Comparison of long-term effectiveness and complications of radiofrequency ablation with hepatectomy for small hepatocellular carcinoma

Yong Fang; Wei Chen; Xiao Liang; Da Li; Haizhou Lou; Renbiao Chen; Kaifeng Wang; Hongming Pan

To determine and compare the adverse events and long‐term effectiveness for patients with small hepatocellular carcinoma (HCC) (≤ 3 cm) treated by percutaneous radiofrequency ablation (RFA) or hepatectomy.


PLOS ONE | 2014

Use of Metformin Alone Is Not Associated with Survival Outcomes of Colorectal Cancer Cell but AMPK Activator AICAR Sensitizes Anticancer Effect of 5-Fluorouracil through AMPK Activation

Xinbing Sui; Yinghua Xu; Jie Yang; Yong Fang; Haizhou Lou; Weidong Han; Maolin Zhang; Wei Chen; Kaifeng Wang; Da Li; Wei Jin; Fang Lou; Yu Zheng; Hong Hu; Liu Gong; Xiaoyun Zhou; Qin Pan; Hongming Pan; Xian Wang; Chao He

Colorectal cancer (CRC) is still the third most common cancer and the second most common causes of cancer-related death around the world. Metformin, a biguanide, which is widely used for treating diabetes mellitus, has recently been shown to have a suppressive effect on CRC risk and mortality, but not all laboratory studies suggest that metformin has antineoplastic activity. Here, we investigated the effect of metformin and AMPK activator AICAR on CRC cells proliferation. As a result, metformin did not inhibit cell proliferation or induce apoptosis for CRC cell lines in vitro and in vivo. Different from metformin, AICAR emerged antitumor activity and sensitized anticancer effect of 5-FU on CRC cells in vitro and in vivo. In further analysis, we show that AMPK activation may be a key molecular mechanism for the additive effect of AICAR. Taken together, our results suggest that metformin has not antineoplastic activity for CRC cells as a single agent but AMPK activator AICAR can induce apoptosis and enhance the cytotoxic effect of 5-FU through AMPK activation.


Cancer Letters | 2015

Nuclear factor of activated T cells in cancer development and treatment

Jiawei Shou; Jing Jing; Jiansheng Xie; Liangkun You; Zhao Jing; Junlin Yao; Weidong Han; Hongming Pan

Since nuclear factor of activated T cells (NFAT) was first identified as a transcription factor in T cells, various NFAT isoforms have been discovered and investigated. Accumulating studies have suggested that NFATs are involved in many aspects of cancer, including carcinogenesis, cancer cell proliferation, metastasis, drug resistance and tumor microenvironment. Different NFAT isoforms have distinct functions in different cancers. The exact function of NFAT in cancer or the tumor microenvironment is context dependent. In this review, we summarize our current knowledge of NFAT regulation and function in cancer development and treatment. NFATs have emerged as a potential target for cancer prevention and therapy.


International Journal of Molecular Sciences | 2012

Nec-1 Enhances Shikonin-Induced Apoptosis in Leukemia Cells by Inhibition of RIP-1 and ERK1/2.

Weidong Han; Jiansheng Xie; Yong Fang; Zhanggui Wang; Hongming Pan

Necrostatin-1 (Nec-1) inhibits necroptosis by allosterically inhibiting the kinase activity of receptor-interacting protein 1 (RIP1), which plays a critical role in necroptosis. RIP1 is a crucial adaptor kinase involved in the activation of NF-κB, production of reactive oxygen species (ROS) and the phosphorylation of mitogen activated protein kinases (MAPKs). NF-κB, ROS and MAPKs all play important roles in apoptotic signaling. Nec-1 was regarded as having no effect on apoptosis. Here, we report that Nec-1 increased the rate of nuclear condensation and caspases activation induced by a low concentration of shikonin (SHK) in HL60, K562 and primary leukemia cells. siRNA-mediated knockdown of RIP1 significantly enhanced shikonin-induced apoptosis in K562 and HL60 cells. Shikonin treatment alone could slightly inhibit the phosphorylation of ERK1/2 in leukemia cells, and the inhibitory effect on ERK1/2 was significantly augmented by Nec-1. We also found that Nec-1 could inhibit NF-κB p65 translocation to the nucleus at a later stage of SHK treatment. In conclusion, we found that Nec-1 can promote shikonin-induced apoptosis in leukemia cells. The mechanism by which Nec-1 sensitizes shikonin-induced apoptosis appears to be the inhibition of RIP1 kinase-dependent phosphorylation of ERK1/2. To our knowledge, this is the first study to document Nec-1 sensitizes cancer cells to apoptosis.


Cancer Letters | 2015

Epigenetic modifications as regulatory elements of autophagy in cancer

Xinbing Sui; Jing Zhu; Jichun Zhou; Xian Wang; Da Li; Weidong Han; Yong Fang; Hongming Pan

Epigenetic modifications have been considered as hallmarks of cancer and play an important role in tumor initiation and development. Epigenetic mechanisms, including DNA methylation, histone modifications, and microRNAs, may regulate cell cycle and apoptosis, as well as macroautophagy (hereafter referred to as autophagy). Autophagy, as a crucial cellular homeostatic mechanism, performs a dual role, having pro-survival or pro-death properties. A variety of signaling pathways including epigenetic control have been implicated in the upregulation or downregulation of autophagy. However, the role of epigenetic regulation in autophagy is still less well acknowledged. Recent studies have linked epigenetic control to the autophagic process. Some epigenetic modifiers are also involved in the regulation of autophagy and potentiate the efficacy of traditional therapeutics. Thus, understanding the novel functions of epigenetic control in autophagy may allow us to develop potential therapeutic approaches for cancer treatment.

Collaboration


Dive into the Hongming Pan's collaboration.

Top Co-Authors

Avatar

Weidong Han

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Xinbing Sui

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Yong Fang

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Jiansheng Xie

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Xian Wang

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Da Li

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Zhao Jing

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Fang Lou

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Jichun Zhou

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Liangkun You

Sir Run Run Shaw Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge