Hongquan Jiang
Harbin Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hongquan Jiang.
Neuroscience | 2014
H.-Q. Jiang; Ming Ren; Hongquan Jiang; J. Wang; J. Zhang; Xiang Yin; Shuyu Wang; Yan Qi; Xudong Wang; Honglin Feng
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disease characterized by the loss of motor neurons in the motor cortex, brain stem and spinal cord. Currently, there is no cure for this lethal disease. Although the mechanism underlying neuronal cell death in ALS remains elusive, growing evidence supports a crucial role of endoplasmic reticulum (ER) stress in the pathogenesis of ALS. Recent reports show that guanabenz, a novel inhibitor of eukaryotic initiation factor 2α (eIF2α) dephosphorylation, possesses anti-prion properties, attenuates ER stress and reduces paralysis and neurodegeneration in mTDP-43 Caenorhabditis elegans and Danio rerio models of ALS. However, the therapeutic potential of guanabenz for the treatment of ALS has not yet been assessed in a mouse model of ALS. In the present study, guanabenz was administered to a widely used mouse model of ALS expressing copper zinc superoxide dismutase-1 (SOD1) with a glycine to alanine mutation at position 93 (G93A). The results showed that the administration of guanabenz significantly extended the lifespan, delayed the onset of disease symptoms, improved motor performance and attenuated motor neuron loss in female SOD1 G93A mice. Moreover, western blotting results revealed that guanabenz dramatically increased the levels of phosphorylated-eIF2α (P-eIF2α) protein, without affecting total eIF2α protein levels. The results also revealed a significant decrease in the levels of the ER chaperone glucose-regulated protein 78 (BiP/Grp78) and markers of another two ER stress pathways, activating transcription factor 6α (ATF6α) and inositol-requiring enzyme 1 (IRE1). In addition, guanabenz increased the protein levels of anti-apoptotic B cell lymphoma/lewkmia-2 (Bcl-2), and down-regulated the pro-apoptotic protein levels of C/EBP homologous protein (CHOP), Bcl-2-associated X protein (BAX) and cytochrome C in SOD1 G93A mice. Our findings indicate that guanabenz may represent a novel therapeutic candidate for the treatment of ALS, a lethal human disease with an underlying mechanism involving the attenuation of ER stress and mitochondrial stress via prolonging eIF2α phosphorylation.
Molecular and Cellular Neuroscience | 2015
Xiang Yin; Ming Ren; H.-Q. Jiang; Shangjin Cui; Shuyu Wang; Hongquan Jiang; Yan Qi; Jing Wang; Xudong Wang; Guangtao Dong; Peter Leeds; De-Maw Chuang; Honglin Feng
Astrocyte elevated gene-1 (AEG-1) has been reported to regulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and is also regulated by it. This study investigated how AEG-1 participates in the survival pathway of motor neurons in amyotrophic lateral sclerosis (ALS). We found reduced levels of AEG-1 in ALS motor neurons, both in vivo and in vitro, compared to wild type controls. Moreover, AEG-1 silencing demonstrated inhibition of the PI3K/Akt pathway and increased cell apoptosis. Additionally, the PI3K/Akt pathway in mSOD1 cells was unresponsive under serum deprivation conditions compared to wtSOD1 cells. These results suggest that AEG-1 deficiency, together with the inhibited PI3K/Akt pathway was associated with decreased viability of ALS motor neurons. However, the mRNA levels of AEG-1 were still lower in mSOD1 cells compared to the control groups, though the signaling pathway was activated by application of a PI3-K activator. This suggests that in ALS motor neurons, some unknown interruption exists in the PI3K/Akt/CREB/AEG-1 feedback loop, thus attenuating the protection by this signaling pathway. Together, these findings support that AEG-1 is a critical factor for cell survival, and the disrupted PI3K/Akt/CREB/AEG-1cycle is involved in the death of injured motor neurons and pathogenesis of ALS.
Neurotoxicology | 2015
Guangtao Dong; Ming Ren; Xiujie Wang; Hongquan Jiang; Xiang Yin; Shuyu Wang; Xudong Wang; Honglin Feng
Approximately half of those who survive severe carbon monoxide (CO) poisoning develop delayed neurologic sequelae. Growing evidence supports the crucial role of free radicals in delayed brain injury associated with CO toxicity. Xanthine oxidase (XO) has been reported to play a pivotal role in the generation of reactive oxygen species (ROS) in CO poisoning. A recent report indicates that allopurinol both attenuated oxidative stress and possessed anti-inflammatory properties in an animal model of acute liver failure. In this study, we aimed to explore the potential of allopurinol to reduce the severity of delayed neurologic sequelae. The rats were first exposed to 1000 ppm CO for 40 min and then to 3000 ppm CO for another 20 min. Following CO poisoning, the rats were injected with allopurinol (50 mg/kg, i.p.) six times. Results showed that allopurinol significantly reduced neuronal death and suppressed expression of pro-inflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, ionized calcium-binding adapter molecule 1, and degraded myelin basic protein. Furthermore, behavioral studies revealed an improved performance in the Morris water maze test. Our findings indicated that allopurinol may have protective effects against delayed neurologic sequelae caused by CO toxicity.
Neuroscience | 2015
Shuyu Wang; Ming Ren; Hongquan Jiang; J. Wang; H.-Q. Jiang; Xiang Yin; Yan Qi; Xudong Wang; Guangtao Dong; Tianhang Wang; Yueqing Yang; Honglin Feng
Amyotrophic lateral sclerosis (ALS) is an idiopathic and lethal neurodegenerative disease that currently has no effective treatment. A recent study found that the Notch signaling pathway was up-regulated in a TAR DNA-binding protein-43 (TDP-43) Drosophila model of ALS. Notch signaling acts as a master regulator in the central nervous system. However, the mechanisms by which Notch participates in the pathogenesis of ALS have not been completely elucidated. Recent studies have shown that the mood stabilizers lithium and valproic acid (VPA) are able to regulate Notch signaling. Our study sought to confirm the relationship between the Notch pathway and ALS and whether the Notch pathway contributes to the neuroprotective effects of lithium and VPA in ALS. We found that the Notch pathway was activated in in vitro and in vivo models of ALS, and suppression of Notch activation with a Notch signaling inhibitor, N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) and Notch1 siRNA significantly reduced neuronal apoptotic signaling, as evidenced by the up-regulation of Bcl-2 as well as the down-regulation of Bax and cytochrome c. We also found that lithium and VPA suppressed the Notch activation associated with the superoxide dismutase-1 (SOD1) mutation, and the combination of lithium and VPA produced a more robust effect than either agent alone. Our findings indicate that the Notch pathway plays a critical role in ALS, and the neuroprotective effects of lithium and VPA against mutant SOD1-mediated neuronal damage are at least partially dependent on their suppression of Notch activation.
Frontiers in Aging Neuroscience | 2016
Yan Qi; Xiang Yin; Shuyu Wang; Hongquan Jiang; Xudong Wang; Ming Ren; Xiang-ping Su; Shi Lei; Honglin Feng
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease causing death of motor neurons. This study investigated the roles of energy metabolism in the pathogenesis of ALS in the SOD1(G93A) transgenic mouse model. Control and SOD1(G93A) mice were administered with shcontrol or shPGC-1α in combination with PBS or thiazolidinedione (TZD) for 8 weeks. Gene expression was analyzed by quantitative real-time PCR and Western blot. ROS and fibrosis were assessed with a colorimetric kit and Sirius staining, respectively. Inflammatory cytokines were measured using ELISA kits. The levels of tissue ROS and serum inflammatory cytokines were significantly higher in SOD1(G93A) mice compared to control mice, and knocking down peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) drastically increased cytokine levels in both control and SOD1(G93A) mice. Muscle fibrosis was much severer in SOD1(G93A) mice, and worsened by silencing PGC-1α and attenuated by TZD. The expression levels of PGC-1α, SOD1, UCP2, and cytochrome C were substantially reduced by shPGC-1α and increased by TZD in muscle of both control and SOD1(G93A) mice, whereas the level of NF-κB was significantly elevated in SOD1(G93A) mice, which was further increased by PGC-1α silencing. These data indicated that disruption of energy homeostasis would exacerbate the pathological changes caused by SOD1 mutations to promote the pathogenesis of ALS.
International Journal of Molecular Sciences | 2016
H.-Q. Jiang; Shuyu Wang; Xiang Yin; Hongquan Jiang; Xudong Wang; Jing Wang; Tianhang Wang; Yan Qi; Yueqing Yang; Ying Wang; Chunting Zhang; Honglin Feng
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important roles in neurological diseases. In this study, we explored whether Homer1b/c was involved in SOD1 mutation-linked ALS. Results: In vitro studies showed that the SOD1 G93A mutation induced an increase of Homer1b/c expression at both the mRNA and protein levels in NSC34 cells. Knockdown of Homer1b/c expression using its short interfering RNA (siRNA) (si-Homer1) protected SOD1 G93A NSC34 cells from apoptosis. The expressions of Homer1b/c and apoptosis-related protein Bax were also suppressed, while Bcl-2 was increased by lithium and valproic acid (VPA) in SOD1 G93A NSC34 cells. In vivo, both the mRNA and protein levels of Homer1b/c were increased significantly in the lumbar spinal cord in SOD1 G93A transgenic mice compared with wild type (WT) mice. Moreover, lithium and VPA treatment suppressed the expression of Homer1b/c in SOD1 G93A mice. Conclusion: The suppression of SOD1 G93A mutation-induced Homer1b/c upregulation protected ALS against neuronal apoptosis, which is a novel mechanism of the neuroprotective effect of lithium and VPA. This study provides new insights into pathogenesis and treatment of ALS.
Toxicology Letters | 2015
Xiang Yin; Yan Qi; Ming Ren; Shuyu Wang; Hongquan Jiang; Honglin Feng; Shangjin Cui
OBJECTIVE To explore the adverse effect of roscovitine on reproductive system of male mice. MATERIALS AND METHODS Male hSOD1(G93A) transgenetic mice received roscovitine 72 nmol/day (d) for 4 weeks (w), with normal control and dimethyl sulfoxide (DMSO)-treated animals served as controls (n=4). Male C57BL/6 mice were treated with roscovitine at either 72 nmol/d or 144 nmol/d for 4 w or 8 w, and normal control and DMSO treated mice served as controls. Fertility of male mice, sperm quality parameters, histological and related pathological changes of seminiferous tubules associated with roscovitine treatment were evaluated. RESULTS In male hSOD1(G93A) transgenetic mice treated with 72 nmol/d roscovitine for 4 w and C57BL/6 male mice treated with 72 nmol/d roscovitine for 8w and 144 nmol/d roscovitine for 4 w and 8 w, sperm counts and sperm motility rates decreased and sperm abnormality rates increased, and damage of seminiferous tubules were detected. Roscovitine treatment induced inhibition of CDK5 activities and decrease of BrdU-positive tubuler cells. CONCLUSION These results demonstrated that roscovitine treatment induced interference of male reproductive system and caused impairment of fertilizing ability. Reproductive system of ALS male mice was more susceptible to roscovitine induced impaired fertilizing ability.
Brain Research Bulletin | 2018
Tianhang Wang; Jiling Cheng; Shuyu Wang; Xudong Wang; Hongquan Jiang; Yueqing Yang; Ying Wang; Chunting Zhang; Weiwei Liang; Honglin Feng
Amyotrophic lateral sclerosis (ALS) is a degenerative disease with a progressive loss of motor neurons in the central nervous system (CNS). However, there are unsolved problems with the therapies for this disease. α-Lipoic acid (LA) is a natural, universal antioxidant capable of scavenging hydroxyl radicals as well as regenerating a series of antioxidant enzymes that has been widely used in clinical settings. This study aimed to evaluate the antioxidant and neuroprotective effects of LA in ALS cell and Drosophila models with mutant G85R and G93A hSOD1 genes. The biological effects of LA and the protein levels of several antioxidant factors were examined, as were those of phospho-Akt and phospho-ERK. Furthermore, specific inhibitors of the PI3K/Akt and MEK/ERK signaling pathways were used to analyze their effects on LA-induced antioxidant expression in vivo and in vitro. Evidences showed that the mutant hSOD1 resulted in the increased oxidative stress, abnormal antioxidant signaling and pathological behaviors in motor performance and survival compared with non-mutant hSOD1 models, treatment with LA improved motor activity and survival in transgenic flies, prevented NSC34 cells from mutant hSOD1 or H2O2 induced decreased antioxidant enzymes as well as increased ROS levels. In addition, LA regulated the expression levels of antioxidant proteins in a dose- and periodical time-dependent manner, which might be mediated by ERK/Akt pathway activation and independent from the mutant hSOD1 gene. Our observations suggest that LA exerts strong and positive antioxidant and neuroprotective effects through the activation of the ERK-Akt pathway in hSOD1 ALS models.
Scientific Reports | 2016
Changsong Wang; Mingjuan Li; Hongquan Jiang; Hongshuang Tong; Yue Feng; Yue Wang; Xin Pi; Lei Guo; Maomao Nie; Honglin Feng; Enyou Li
Amyotrophic lateral sclerosis (ALS) is an incurable neurological degenerative disease. It can cause irreversible neurological damage to motor neurons; typical symptoms include muscle weakness and atrophy, bulbar paralysis and pyramidal tract signs. The ALS-mimicking disease cervical spondylotic myelopathy (CSM) presents similar symptoms, but analysis of breath volatile organic compounds (VOCs) can potentially be used to distinguish ALS from CSM. In this study, breath samples were collected from 28 ALS and 13 CSM patients. Subsequently, gas chromatography/mass spectrometry (GCMS) was used to analyze breath VOCs. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLSDA) were the statistical methods used to process the final data. We identified 4 compounds with significantly decreased levels in ALS patients compared with CSM controls: (1) carbamic acid, monoammonium salt; (2) 1-alanine ethylamide, (S)-; (3) guanidine, N,N-dimethyl-; and (4) phosphonic acid, (p-hydroxyphenyl)-. Currently, the metabolic origin of the VOCs remains unclear; however, several pathways might explain the decreasing trends observed. The results of this study demonstrate that there are specific VOC profiles associated with ALS and CSM patients that can be used to differentiate between the two. In addition, these metabolites could contribute to a better understanding of the underlying pathophysiological mechanisms of ALS.
Molecular and Cellular Neuroscience | 2018
Xiang Yin; Shuyu Wang; Yan Qi; Xudong Wang; Hongquan Jiang; Tianhang Wang; Yueqing Yang; Ying Wang; Chunting Zhang; Honglin Feng
&NA; AEG‐1 has received extensive attention on cancer research. However, little is known about its roles in astrogliosis of Amyotrophic lateral sclerosis (ALS). In this study, we detected AEG‐1 expression in hSOD1G93A‐positive (mut‐SOD1) astrocytes and wild type (wt‐SOD1) astrocytes, and intend to elucidate its potential functions in ALS related astrogliosis and the always accompanied dysregulated glutamate clearance. Results showed elevated protein and mRNA levels of AEG‐1 in mut‐SOD1 astrocytes; Also, NF‐&kgr;B signaling pathway related proteins and inflammatory cytokines were upregulated in mut‐SOD1 astrocytes; AEG‐1 knockdown attenuated astrocytes proliferation and pro‐inflammatory release; also we found that AEG‐1 silence inhibited translocation of p65 from cytoplasma to nuclear, which was associated with inhibited NF‐&kgr;B signaling. Besides, excitatory amino acid transporter‐2 (EAAT2) expression levels were significantly decreased, accompanied by impaired glutamate clearance ability, in mut‐SOD1 astrocytes; yin yang 1 (YY1), a transcriptional inhibitor for EAAT2, increased in nucleus of mut‐SOD1 astrocytes. AEG‐1 silence inhibited translocation of YY1 to nucleus, increased EAAT2 expression levels, and enhanced astrocytic ability of glutamate clearance, ultimately exerted the neuronal protection. Findings from this study implicate potential function of AEG‐1 in mut‐SOD1 related astrogliosis and the accompanied excitatory cytotoxic mechanism in ALS. HighlightsAEG‐1 and NF‐&kgr;B signal pathways were activated in mut‐SOD1 astrocytes;AEG‐1 silence inhibited astrogliosis, which may be related with repression of p65 translocation in mut‐SOD1 astrocytes;AEG‐1 silence upregulated EAAT2 expression and enhanced glutamate clearance in mut‐SOD1 astrocytes.