Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongtao Yuan is active.

Publication


Featured researches published by Hongtao Yuan.


ACS Nano | 2013

Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary

Yu Zhang; Yanfeng Zhang; Qingqing Ji; Jing Ju; Hongtao Yuan; Jianping Shi; Teng Gao; Donglin Ma; Mengxi Liu; Yubin Chen; Xiuju Song; Harold Y. Hwang; Yi Cui; Zhongfan Liu

Atomically thin tungsten disulfide (WS2), a structural analogue to MoS2, has attracted great interest due to its indirect-to-direct band-gap tunability, giant spin splitting, and valley-related physics. However, the batch production of layered WS2 is underdeveloped (as compared with that of MoS2) for exploring these fundamental issues and developing its applications. Here, using a low-pressure chemical vapor deposition method, we demonstrate that high-crystalline mono- and few-layer WS2 flakes and even complete layers can be synthesized on sapphire with the domain size exceeding 50 × 50 μm(2). Intriguingly, we show that, with adding minor H2 carrier gas, the shape of monolayer WS2 flakes can be tailored from jagged to straight edge triangles and still single crystalline. Meanwhile, some intersecting triangle shape flakes are concomitantly evolved from more than one nucleus to show a polycrystalline nature. It is interesting to see that, only through a mild sample oxidation process, the grain boundaries are easily recognizable by scanning electron microscopy due to its altered contrasts. Hereby, controlling the initial nucleation state is crucial for synthesizing large-scale single-crystalline flakes. We believe that this work would benefit the controlled growth of high-quality transition metal dichalcogenide, as well as in their future applications in nanoelectronics, optoelectronics, and solar energy conversions.


Nature Materials | 2010

Liquid-gated interface superconductivity on an atomically flat film.

Justin Ye; S. Inoue; Katsuki Kobayashi; Y. Kasahara; Hongtao Yuan; Hidekazu Shimotani; Yoshihiro Iwasa

Liquid/solid interfaces are attracting growing interest not only for applications in catalytic activities and energy storage, but also for their new electronic functions in electric double-layer transistors (EDLTs) exemplified by high-performance organic electronics, field-induced electronic phase transitions, as well as superconductivity in SrTiO(3) (ref. 12). Broadening EDLTs to induce superconductivity within other materials is highly demanded for enriching the materials science of superconductors. However, it is severely hampered by inadequate choice of materials and processing techniques. Here we introduce an easy method using ionic liquids as gate dielectrics, mechanical micro-cleavage techniques for surface preparation, and report the observation of field-induced superconductivity showing a transition temperature T(c)=15.2 K on an atomically flat film of layered nitride compound, ZrNCl. The present result reveals that the EDLT is an extremely versatile tool to induce electronic phase transitions by electrostatic charge accumulation and provides new routes in the search for superconductors beyond those synthesized by traditional chemical methods.


Advanced Functional Materials | 2016

High responsivity phototransistors based on few-layer ReS2 for weak signal detection

Erfu Liu; Mingsheng Long; Junwen Zeng; Wei Luo; Yaojia Wang; Yiming Pan; Wei Zhou; Baigeng Wang; Weida Hu; Zhenhua Ni; Yu-Meng You; Xueao Zhang; Shiqiao Qin; Yi Shi; Kenji Watanabe; Takashi Taniguchi; Hongtao Yuan; Harold Y. Hwang; Yi Cui; Feng Miao; Dingyu Xing

Two-dimensional transition metal dichalcogenides are emerging with tremendous potential in many optoelectronic applications due to their strong light-matter interactions. To fully explore their potential in photoconductive detectors, high responsivity and weak signal detection are required. Here, we present high responsivity phototransistors based on few-layer rhenium disulfide (ReS2). Depending on the back gate voltage, source drain bias and incident optical light intensity, the maximum attainable photoresponsivity can reach as high as 88,600 A W-1, which is a record value compared to other two-dimensional materials with similar device structures and two orders of magnitude higher than that of monolayer MoS2. Such high photoresponsivity is attributed to the increased light absorption as well as the gain enhancement due to the existence of trap states in the few-layer ReS2 flakes. It further enables the detection of weak signals, as successfully demonstrated with weak light sources including a lighter and limited fluorescent lighting. Our studies underscore ReS2 as a promising material for future sensitive optoelectronic applications.


Journal of the Physical Society of Japan | 2014

Field-Induced Superconductivity in Electric Double Layer Transistors

Kazunori Ueno; Hidekazu Shimotani; Hongtao Yuan; Jianting Ye; Masashi Kawasaki; Yoshihiro Iwasa

Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possible in principle but impossible in practice. However, in the past several years, this limitation has been overcome by the introduction of an electrochemical concept, and electric-field-induced superconductivity has been realized. In the electric double layer (EDL) formed at the electrochemical interfaces, an extremely high electric field is generated and hence high-density charge carriers sufficient to induce superconductivity exist and are collectively used as a charge accumulation device known as an EDL capacitor. Field-induced superconductivity has been used to establish the relationship between Tc and carrier density and can now be used to search for new superconductors. Here, we review electric-field-induc...


Applied Physics Letters | 2014

Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties

Xiaoge Liu; Junghyun Park; Ju-Hyung Kang; Hongtao Yuan; Yi Cui; Harold Y. Hwang; Mark L. Brongersma

Doped indium tin oxide (ITO) behaves as a Drude metal with a plasma frequency that is controlled by its free carrier density. In this work, we systematically tune this frequency across the mid-infrared range by annealing treatments in a reducing environment that produce high electron concentrations (∼1021u2009cm−3). The changes in ITOs optical properties that result from the changes in carrier density are measured by attenuated total reflection measurements. These optical frequency measurements are complemented by Hall measurements to obtain a comprehensive picture of the Drude response of the ITO films. It was found that a complete description of the optical properties at very high carrier densities needs to account for the nonparabolicity of the conduction band of ITO and a reduced carrier mobility. More specifically, an increase in carrier concentration from 6.2u2009×u20091019u2009cm−3 to 1.4 × 1021u2009cm−3 comes with a change of the effective electron mass from 0.35u2009m0 to 0.53 m0 and a decrease in the optical frequency...


Nano Letters | 2015

Direct Imaging of Nanoscale Conductance Evolution in Ion-Gel-Gated Oxide Transistors.

Yuan Ren; Hongtao Yuan; Xiaoyu Wu; Zhuoyu Chen; Yoshihiro Iwasa; Yi Cui; Harold Y. Hwang; Keji Lai

Electrostatic modification of functional materials by electrolytic gating has demonstrated a remarkably wide range of density modulation, a condition crucial for developing novel electronic phases in systems ranging from complex oxides to layered chalcogenides. Yet little is known microscopically when carriers are modulated in electrolyte-gated electric double-layer transistors (EDLTs) due to the technical challenge of imaging the buried electrolyte-semiconductor interface. Here, we demonstrate the real-space mapping of the channel conductance in ZnO EDLTs using a cryogenic microwave impedance microscope. A spin-coated ionic gel layer with typical thicknesses below 50 nm allows us to perform high resolution (on the order of 100 nm) subsurface imaging, while maintaining the capability of inducing the metal-insulator transition under a gate bias. The microwave images vividly show the spatial evolution of channel conductance and its local fluctuations through the transition as well as the uneven conductance distribution established by a large source-drain bias. The unique combination of ultrathin ion-gel gating and microwave imaging offers a new opportunity to study the local transport and mesoscopic electronic properties in EDLTs.


Nature Nanotechnology | 2018

Spatially controlled doping of two-dimensional SnS 2 through intercalation for electronics

Yongji Gong; Hongtao Yuan; Chun-Lan Wu; Peizhe Tang; Shize Yang; Ankun Yang; Guodong Li; Bofei Liu; Jorik van de Groep; Mark L. Brongersma; Matthew F. Chisholm; Shou-Cheng Zhang; Wu Zhou; Yi Cui

Doped semiconductors are the most important building elements for modern electronic devices1. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface2,3. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits4–9. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturally grown n-type S-vacancy SnS2, Cu intercalated bilayer SnS2 obtained by this technique displays a hole field-effect mobility of ~40u2009cm2u2009V−1u2009s−1, and the obtained Co-SnS2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene5. Combining this intercalation technique with lithography, an atomically seamless p–n–metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.Intercalation of copper and cobalt atoms into n-type SnS2 enables seamless integration of metal, and n- and p-type semiconductors in one parent 2D material.


arXiv: Mesoscale and Nanoscale Physics | 2017

Gated tuned superconductivity and phonon softening in monolayer and bilayer MoS 2

Yajun Fu; Erfu Liu; Hongtao Yuan; Peizhe Tang; Biao Lian; Gang Xu; Junwen Zeng; Zhuoyu Chen; Yaojia Wang; Wei Zhou; Kang Xu; Anyuan Gao; Chen Pan; Miao Wang; Baigeng Wang; Shou-Cheng Zhang; Yi Cui; Harold Y. Hwang; Feng Miao

Superconductors at the atomic two-dimensional limit are the focus of an enduring fascination in the condensed matter community. This is because, with reduced dimensions, the effects of disorders, fluctuations, and correlations in superconductors become particularly prominent at the atomic two-dimensional limit; thus such superconductors provide opportunities to tackle tough theoretical and experimental challenges. Here, based on the observation of ultrathin two-dimensional superconductivity in monolayer and bilayer molybdenum disulfide (MoS2) with electric-double-layer gating, we found that the critical sheet carrier density required to achieve superconductivity in a monolayer MoS2 flake can be as low as 0.55u2009×u20091014u2009cm−2, which is much lower than those values in the bilayer and thicker cases in previous report and also our own observations. Further comparison of the phonon dispersion obtained by ab initio calculations indicated that the phonon softening of the acoustic modes around the M point plays a key role in the gate-induced superconductivity within the Bardeen–Cooper–Schrieffer theory framework. This result might help enrich the understanding of two-dimensional superconductivity with electric-double-layer gating.Superconductivity: Tunable superconductivity in two-dimensional materialsExperiments show that a softening of phonon modes aids gate-induced superconductivity in two-dimensional materials. As a material’s dimensions are reduced, the role of disorder and electronic correlations in defining the electronic properties become more prominent, and as the density of charge carriers is much lower, superconductivity is less likely to emerge. An international team of researchers led by Feng Mio and Baigeng Wang from Nanjing University and Harold Hwang from SLAC National Accelerator laboratory and Stanford University use an ionic liquid-based setup, which allows for high gate voltages to be applied, to demonstrate gate-induced superconductivity in monolayers and bilayers of a transition metal dichalcogenide. They show that a softening of the acoustic phonon modes allows for superconductivity to be realized in single layers with a lower carrier density than that needed in multilayers.


Nano Letters | 2018

Gate-Induced Interfacial Superconductivity in 1T-SnSe2

Junwen Zeng; Erfu Liu; Yajun Fu; Zhuoyu Chen; Chen Pan; Chenyu Wang; Miao Wang; Yaojia Wang; Kang Xu; Songhua Cai; Xingxu Yan; Yu Wang; Xiaowei Liu; Peng Wang; Shi-Jun Liang; Yi Cui; Harold Y. Hwang; Hongtao Yuan; Feng Miao

Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides, and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe2, a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature Tc ≈ 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on (1) a 2D Tinkham description of the angle-dependent upper critical field Bc2, (2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane Bc2 approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.


Nano Letters | 2018

Gate-Induced Metal–Insulator Transition in MoS2 by Solid Superionic Conductor LaF3

Chun-Lan Wu; Hongtao Yuan; Yanbin Li; Yongji Gong; Harold Y. Hwang; Yi Cui

Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 1014 cm-2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, we demonstrate an all solid-state EDL device based on a solid superionic conductor LaF3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF3 EDL transistors (EDLTs), we observe the metal-insulator transition in MoS2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS2 transistors. This result shows the powerful gating capability of LaF3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.

Collaboration


Dive into the Hongtao Yuan's collaboration.

Top Co-Authors

Avatar

Harold Y. Hwang

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yi Cui

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge