Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongwei He is active.

Publication


Featured researches published by Hongwei He.


Cancer Gene Therapy | 2004

Silencing of hdm2 oncogene by siRNA inhibits p53-dependent human breast cancer

Tie-Gang Liu; James Q. Yin; Boyang Shang; Zhang Min; Hongwei He; Jian-ming Jiang; Fang Chen; Yongsu Zhen; Rongguang Shao

RNA interference technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. Here our results showed that hdm2-siRNA silenced its target mRNA specifically and effectively in human breast cancer cells, reduced tumor cell proliferation and induced apoptotic cell death. Other molecular features modified by hdm2-siRNA included decreased Bcl-2, NF-κB, survivin, Ras and Raf levels, elevated p53, p21, BRCA1, Bax, and caspase levels as well as altered expression of other genes. hdm2-siRNA also caused cell cycle arrest at G1 phases with reduction in cyclin and Cdk proteins. In addition, hdm2-siRNA displayed in vivo antitumor activity and increased therapeutic effectiveness of mitomycin in MCF-7 xenografts. Thus, hdm2-siRNA may be a promising gene-specific drug for the treatment of human breast cancer and other tumors.


Antimicrobial Agents and Chemotherapy | 2010

Heat Stress Cognate 70 Host Protein as a Potential Drug Target against Drug Resistance in Hepatitis B Virus

Yu-Ping Wang; Fei Liu; Hongwei He; Yan-Xin Han; Zong-Gen Peng; Baowei Li; Xuefu You; Dan-Qing Song; Zhuorong Li; Liyan Yu; Shan Cen; Bin Hong; Chen-Heng Sun; Li-Xun Zhao; Barry N. Kreiswirth; David S. Perlin; Rongguang Shao; Jian-Dong Jiang

ABSTRACT Heat stress cognate 70 (Hsc70) is a host protein associated with hepatitis B virus (HBV) replication. The goal of this study was to investigate whether Hsc70 could be an anti-HBV drug target. Our results showed that introducing Hsc70 increased HBV replication in HBV+ human hepatocytes (HepG2.2.15 cells). The coiled-coil region on Hsc70 (nucleotides 1533 to 1608; amino acids 511 to 536) was the key sequence for HBV replication. Knockdown of Hsc70 expression by RNA interference (RNAi) largely inhibited HBV replication with no cytotoxicity to the host. Using an Hsc70 mRNA screening assay, the natural compound oxymatrine (OMTR) was found to be a selective inhibitor for Hsc70 expression. Then, OMTR was used to investigate the potential of Hsc70 as an anti-HBV drug target. OMTR inhibited Hsc70 mRNA expression by 80% and HBV DNA replication by over 60% without causing cytotoxicity. The anti-HBV effect of OMTR appeared to be mediated by destabilizing Hsc70 mRNA. The half-life (T1/2) of Hsc70 mRNA decreased by 50% in OMTR-treated hepatocytes. The Hsc70 mRNA 3′-untranslated-region (UTR) sequence was the element responsible for OMTRs destabilization activity. OMTR suppressed HBV de novo synthesis at the reverse transcription stage from pregenomic RNA (pgRNA) to DNA and was active against either wild-type HBV or strains resistant to lamivudine, adefovir, and entecavir. Therefore, host Hsc70 could be a novel drug target against HBV, and OMTR appears to inhibit HBV replication by destabilizing Hsc70 mRNA. As the target is not a viral protein, OMTR is active for either wild-type HBV or strains resistant to reverse transcriptase (RT) inhibitors.


International Journal of Biological Sciences | 2012

CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells.

Yi Chen; Dongke Yu; Hao Zhang; Hongwei He; Caixia Zhang; Wuli Zhao; Rongguang Shao

Background: EpCAM or CD133 has been used as the tumor initiating cells (TICs) marker in hepatocellular carcinoma (HCC). We investigated whether cells expressing with both EpCAM and CD133 surface marker were more representative for TICs in hepatocellular carcinoma Huh7 cells. Methods: Four different phenotypes of CD133+EpCAM+, CD133+EpCAM-, CD133-EpCAM+ and CD133-EpCAM- in Huh7 cells were sorted by flow cytometry. Then cell differentiation, self-renewal, drug-resistance, spheroid formation and the levels of stem cell-related genes were detected to compare the characteristics of TICs. The ability of tumorigenicity was measured in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to verify TICs. Results: CD133+EpCAM+ cells have many characteristics of TICs in Huh7 cells compared with CD133+EpCAM-, CD133-EpCAM+, CD133-EpCAM- cells, including enrichment in side population cells, higher differentiation capacity, increased colony-formation ability, preferential expression of stem cell-related genes, appearance of drug-resistant to some chemotherapeutics, more spheroid formation of culture cells and stronger tumorigenicity in NOD/SCID mice. Conclusion: CD133+EpCAM+ phenotype is precisely represented TICs in Huh7 cells. It might be useful for studying biology mechanism of TICs in hepatocellular carcinoma and screening new targets for cancer therapy.


Clinical Cancer Research | 2008

N-(2,6-Dimethoxypyridine-3-yl)-9-Methylcarbazole-3-Sulfonamide as a Novel Tubulin Ligand against Human Cancer

Yue-Ming Wang; Laixing Hu; Zhen-Ming Liu; Xuefu You; Sheng-Hua Zhang; Jing-Rong Qu; Zhuorong Li; Yan Li; Wei-Jia Kong; Hongwei He; Rongguang Shao; Liang-Ren Zhang; Zong-Gen Peng; David W. Boykin; Jian-Dong Jiang

Purpose: We have synthesized a new tubulin ligand N-(2,6-dimethoxypyridine-3-yl)-9-methylcarbazole-3-sulfonamide (IG-105). This work investigates its anticancer effect and mechanism. Experimental Design: Anticancer efficacy was evaluated at the molecular target, cancer cells and nude mice. The mechanism was explored at submolecular, molecular, and cellular levels. Results: IG-105 showed a potent activity against human leukemia and solid tumors in breast, liver, prostate, lung, skin, colon, and pancreas with IC50 values between 0.012 and 0.298 μmol/L. It was also active in drug-resistant tumor cells and not a P-glycoprotein substrate. It inhibited microtubule assembly followed by M-phase arrest, Bcl-2 inactivation, and then apoptosis through caspase pathways. The colchicine pocket on tubulin is the binding site of IG-105. Nude mice experiments showed that IG-105 monotherapy at 100 mg/kg i.p. (q2d) yielded 81% inhibition of Bel-7402 hepatoma growth and at 275 mg/kg i.p. (q2d) completely inhibited the tumor growth. MCF-7 breast cancer in nude mice showed a similar therapeutic response to IG-105. Acute toxicity of IG-105 was not found even at 1,000 mg/kg i.p. In combination with oxaliplatin or doxorubicin, IG-105 converted each of these subcurative compounds into a curative treatment with complete inhibition for tumor growth in the hepatoma-bearing nude mice. The combination was more active than either drug. In no experiment was toxicity increased by combination chemotherapy. Conclusions: IG-105 inhibits microtubule assembly by binding at colchicine pocket. It shows a potent anticancer activity in vitro and in vivo and has good safety in mice. We consider IG-105 merits further investigation.


Cancer Science | 2012

GAP161 targets and downregulates G3BP to suppress cell growth and potentiate cisplaitin-mediated cytotoxicity to colon carcinoma HCT116 cells.

Hao Zhang; Shenghua Zhang; Hongwei He; Wuli Zhao; Jianhua Chen; Rongguang Shao

Ras‐GTPase‐activating protein SH3 domain‐binding proteins (G3BP) are overexpressed in various human tumors and participate in several signaling pathways involved in growth, differentiation and apoptosis. G3BP interact with RasGAP (Ras‐GTPase activating protein) only in growing cells and depend on Ras activation, and participate in the Ras signal pathway. Therefore, the blockage and downregulation of G3BP may be a new strategy for cancer therapy. In this report, we demonstrate that a novel peptide GAP161 blocked the functions of G3BP and markedly suppressed HCT116 cell growth through the induction of apoptosis. The peptide bound with G3BP, which interfered with the interaction of G3BP1 with RasGAP and further suppressed Ras signaling pathways. GAP161 downregulated G3BP1 and G3BP2 proteins. Similarly, the knockdown of G3BP substantially decreased the proliferation of HCT116 cells and inhibited Ras signal pathways. Furthermore, the downregulation of G3BP could enhance cisplatin‐induced apoptosis and growth inhibition of HCT116 cells. We also found that GAP161 suppressed the growth of BALB/c mice bearing colon CT26 tumors and nude mice bearing HCT116 xenografts. These results suggest that downregulation of G3BP might be useful in cancer therapy and that GAP161 is a promising new therapeutic agent for cancers. (Cancer Sci, doi: 10.1111/j.1349‐7006.2012.02361.x, 2012)


Biochemical and Biophysical Research Communications | 2009

Dual knockdown of N-ras and epiregulin synergistically suppressed the growth of human hepatoma cells

Meng Zhao; Hongwei He; Huan-xing Sun; Kaihuan Ren; Rongguang Shao

Hepatocellular carcinoma (HCC) is a major challenge because of its resistance to conventional cytotoxic chemotherapy and radiotherapy. Multi-targeted therapy might be a new option for HCC treatment. Our previous study showed that N-ras gene was activated in HCC and was inhibited by RNA interference. In the present study, we investigated the alternation of gene expression by microarray in N-Ras-siRNA-treated HepG2 cells. The results revealed that the EREG gene, encoding epiregulin, was dramatically up-regulated in response to silence of N-ras. We speculated that the up-regulation of epiregulin was involved in the compensatory mechanism of N-ras knockdown for cell growth. Therefore, we evaluated whether dual silence of N-ras and epiregulin display a greater suppression of cell growth. The results confirmed that dual knockdown of N-ras and epiregulin synergistically inhibited cell growth. Our results also showed that dual knockdown of N-ras and epiregulin significantly induced cell arrest at G0/G1 phase. Furthermore, Western blot assay showed that dual knockdown of N-ras and epiregulin markedly reduced the phosphorylations of ERK1/2, Akt and Rb, and inhibited the expression of cyclin D1. Our findings imply that multi-targeted silence of oncogenes might be an effective treatment for HCC.


Acta Pharmacologica Sinica | 2015

The anti-fibrotic effects of epigallocatechin-3-gallate in bile duct-ligated cholestatic rats and human hepatic stellate LX-2 cells are mediated by the PI3K/Akt/Smad pathway

Dongke Yu; Caixia Zhang; Shuangshuang Zhao; Shenghua Zhang; Hao Zhang; Shi-Ying Cai; Rongguang Shao; Hongwei He

Aim:(−)-Epigallocatechin-3-gallate (EGCG) is one of the most abundant polyphenols in green tea with strong antioxidant activity and various therapeutic effects. In this study, we investigated the anti-fibrotic effects of EGCG and underlying mechanisms in bile duct-ligated (BDL) rats and a liver fibrosis model in vitro.Methods:BDL rats were treated with EGCG (25 mg·kg−1·d−1, po) for 14 d, and then the serum, bile and liver samples were collected. Liver fibrosis was assessed by serum, urine and bile biochemistry analyses and morphological studies of liver tissues. TGF-β1-stimulated human hepatic stellate LX-2 cells were used as a liver fibrosis model in vitro. The expression of liver fibrogenic genes and signaling proteins in the PI3K/Akt/Smad pathway was examined using Western blotting and/or real-time PCR.Results:In BDL rats, EGCG treatment significantly ameliorates liver necrosis, inflammation and fibrosis, and suppressed expression of the genes associated with liver inflammation and fibrogenesis, including TNF-α, IL-1β, TGF-β1, MMP-9, α-SMA, and COL1A1. In LX-2 cells, application of EGCG (10, 25 μmol/L) dose-dependently suppressed TGF-β1-stimulated expression of COL1A1, MMP-2, MMP-9, TGF-β1, TIMP1, and α-SMA. Furthermore, EGCG significantly suppressed the phosphorylation of Smad2/3 and Akt in the livers of BDL rats and in TGF-β1-stimulated LX-2 cells. Application of LY294002, a specific inhibitor of PI3K, produced similar effects as EGCG did in TGF-β1-stimulated LX-2 cells, but co-application of EGCG and LY294002 did not produce additive effects.Conclusion:EGCG exerts anti-fibrotic effects in BDL rats and TGF-β1-stimulated LX-2 cells in vitro via inhibiting the PI3K/Akt/Smad pathway.


Cancer Letters | 2011

RasGAP-derived peptide 38GAP potentiates the cytotoxicity of cisplatin through inhibitions of Akt, ERK and NF-κB in colon carcinoma HCT116 cells

Hao Zhang; Shenghua Zhang; Hongwei He; Wuli Zhao; Kaihuan Ren; Jianhua Chen; Rongguang Shao

To increase the efficacy of currently used anti-cancer genotoxins, a combination use of different drugs is a potential new therapeutical tool. Here, we reported that a synthetic RasGAP-derived peptide 38GAP with RasGAP(301-326) and TAT penetration sequences could enhance the effect of chemotherapeutic agent CDDP in human colon carcinoma HCT116 cells. Our results showed that 38GAP significantly increased the CDDP-induced apoptosis in HCT116 cells. This synergistic effect was associated with abrogation of CDDP-induced G2/M arrest by down-regulations of phospho-Cdc2 and p21, and inhibitions of phospho-AKT, phospho-ERK and NF-κB. In animal models, 38GAP combined with CDDP significantly suppressed CT26 tumor growth, while 38GAP alone showed slight inhibitory effect. Our data suggest that 38GAP in combination with chemotherapeutics will become a potential therapeutic strategy for colon cancers.


Molecular Carcinogenesis | 2015

Lidamycin inhibits tumor initiating cells of hepatocellular carcinoma Huh7 through GSK3β/β-catenin pathway

Yi Chen; Dongke Yu; Caixia Zhang; Boyang Shang; Hongwei He; Jinjing Chen; Hao Zhang; Wuli Zhao; Zhen Wang; Xiaoyu Xu; Yongsu Zhen; Rongguang Shao

Recently, tumor initiating cells are considered as the central role of tumorigenicity in hepatocellular carcinoma. Enediyne anticancer antibiotic lidamycin with great potential antitumor activity is currently evaluated in Phase II clinical trials. In this study, we evaluated the effect of lidamycin on tumor initiating cells of hepatocellular carcinoma Huh7 and identified the potential mechanism. Flow cytometry analysis and sorting assay, surface marker assay, sphere formation assay, and aldefluor assay were used to evaluate the effect of lidamycin on Huh7 tumor initiating cells in vitro. To investigate the potential mechanism, the activity of GSK3β/β‐catenin pathway was detected by Western blot and T cell factors transcriptional activity assay. Subcutaneous tumor model in nude mice was used to observe in vivo effect of lidamycin on Huh7 cells. Lidamycin decreased the proportion of EpCAM+ cells and the expression of EpCAM protein. Lidamycin inhibited sphere formation of sorted EpCAM+ cells in 7 d, and of parental cells in three serial passages. The population of aldehyde dehydrogenase‐positive cells was reduced by lidamycin. In addition, lidamycin restrained tumor volume and incidence in vivo. Lidamycin activated GSK3β, and degraded the activity of β‐catenin. Consequently, transcriptional activity of β‐catenin/T cell factors was decreased. In brief, these results suggest that lidamycin suppressed Huh7 tumor initiating cells via GSK3β/β‐catenin pathway. These findings reveal the potential mechanism of lidamycin on tumor initiating cells and the benefit for further clinical evaluation.


Biochemical and Biophysical Research Communications | 2013

The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells.

Caixia Zhang; Hongwei He; Hao Zhang; Dongke Yu; Wuli Zhao; Yi Chen; Rongguang Shao

The treatment of hepatocellular carcinoma (HCC) remains a challenge and the future of cancer therapy will incorporate rational combinations directed to molecular targets that cooperate to drive critical pro-survival signaling. Sphingosine kinase 1 (SphK1) has been shown to regulate various processes important for cancer progression. Given the up-regulated expression of SphK1 in response to the silence of N-ras and other interactions between Ras/ERK and SphK1, it was speculated that combined inhibition of Ras/ERK and SphK1 would create enhanced antitumor effects. Experimental results showed that dual blockage of N-ras/ERK and SphK1 resulted in enhanced growth inhibitions in human hepatoma cells. Similarly, MEK1/2 Inhibitor U0126 potentiated SKI II-induced apoptosis in hepatoma HepG2 cells, consistently with the further attenuation of Akt/ERK/NF-κB signaling pathway. It was also shown that the combination of SKI II and U0126 further attenuated the migration of hepatoma HepG2 cells via FAK/MLC-2 signaling pathway. Taken together, the dual inhibition of SphK1 and Ras/ERK pathway resulted in enhanced effects, which might be an effective therapeutic approach for the treatment of HCC.

Collaboration


Dive into the Hongwei He's collaboration.

Top Co-Authors

Avatar

Rongguang Shao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hao Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Wuli Zhao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Caixia Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hong Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shenghua Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Shuangshuang Zhao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Dongke Yu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Naren Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yucheng Wang

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge