Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongxia Lan is active.

Publication


Featured researches published by Hongxia Lan.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice

Xiaojun Zhang; Jianfei Wang; Ji Huang; Hongxia Lan; Cailin Wang; Congfei Yin; Yunyu Wu; Haijuan Tang; Qian Qian; Jiayang Li; Hongsheng Zhang

Grain size and shape are important components determining rice grain yield, and they are controlled by quantitative trait loci (QTLs). Here, we report the cloning and functional characterization of a major grain length QTL, qGL3, which encodes a putative protein phosphatase with Kelch-like repeat domain (OsPPKL1). We found a rare allele qgl3 that leads to a long grain phenotype by an aspartate-to-glutamate transition in a conserved AVLDT motif of the second Kelch domain in OsPPKL1. The rice genome has other two OsPPKL1 homologs, OsPPKL2 and OsPPKL3. Transgenic studies showed that OsPPKL1 and OsPPKL3 function as negative regulators of grain length, whereas OsPPKL2 as a positive regulator. The Kelch domains are essential for the OsPPKL1 biological function. Field trials showed that the application of the qgl3 allele could significantly increase grain yield in both inbred and hybrid rice varieties, due to its favorable effect on grain length, filling, and weight.


Gene | 2008

Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance

Ji Huang; Mei-Mei Wang; Yan Jiang; Yongmei Bao; Xi Huang; Hui Sun; Dongqing Xu; Hongxia Lan; Hongsheng Zhang

The A20/AN1-type zinc finger protein family is conserved in animals and plants. Using human AWP1 protein as a query, we identified twelve A20/AN1-type zinc finger proteins in japonica rice. Most of these genes were constitutively expressed in leaves, roots, culms and spikes. Through microarray analysis, it was found that four genes (ZFP177, ZFP181, ZFP176, ZFP173), two genes (ZFP181 and ZFP176) and one gene (ZFP157) were significantly induced by cold, drought and H(2)O(2) treatments, respectively. Further expression analysis showed that ZFP177 was responsive to both cold and heat stresses, but down-regulated by salt. The subcellular localization assay indicated that ZFP177 was localized in cytoplasm in tobacco leaf and root cells. Yeast-one hybrid assay showed that ZFP177 lacked trans-activation potential in yeast cells. Overexpression of ZFP177 in tobacco conferred tolerance of transgenic plants to both low and high temperature stresses, but increased sensitivity to salt and drought stresses. Further we found expression levels of some stress-related genes were inhibited in ZFP177 transgenic plants. These results suggested that ZFP177 might play crucial but differential roles in plant responses to various abiotic stresses.


Plant Molecular Biology | 2012

A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.).

Ji Huang; Shu-Jing Sun; Dongqing Xu; Hongxia Lan; Hui Sun; Zhoufei Wang; Yongmei Bao; Jianfei Wang; Haijuan Tang; Hongsheng Zhang

The TFIIIA-type zinc finger transcription factors are involved in plant development and abiotic stress responses. Most TFIIIA-type zinc finger proteins are transcription repressors due to existence of an EAR-motif in their amino acid sequences. In this work, we found that ZFP182, a TFIIIA-type zinc finger protein, forms a homodimer in the nucleus and exhibits trans-activation activity in yeast cells. The deletion analysis indicated that a Leu-rich region at C-terminus is required for the trans-activation. Overexpression of ZFP182 significantly enhanced multiple abiotic stress tolerances, including salt, cold and drought tolerances in transgenic rice. Overexpression of ZFP182 promotes accumulation of compatible osmolytes, such as free proline and soluble sugars, in transgenic rice. ZFP182 activates the expression of OsP5CS encoding pyrroline-5-carboxylate synthetase and OsLEA3 under stress conditions, while OsDREB1A and OsDREB1B were regulated by ZFP182 under both normal and stress conditions. Interestingly, site-directed mutagenesis assay showed that DRE-like elements in ZFP182 promoter are involved in dehydration-induced expression of ZFP182. The yeast two-hybrid assay revealed that ZFP182 interacted with several ribosomal proteins including ZIURP1, an ubiquitin fused to ribosomal protein L40. The in vivo and in vitro interactions of ZFP182 and ZIURP1 were further confirmed by bimolecular fluorescence complementation and His pull-down assays. Our studies provide new clues in the understanding of the mechanisms for TFIIIA-type zinc finger transcription factor mediated stress tolerance and a candidate gene for improving stress tolerance in crops.


Journal of Integrative Plant Biology | 2009

The OsDHODH1 Gene is Involved in Salt and Drought Tolerance in Rice

Wen-Ying Liu; Mei-Mei Wang; Ji Huang; Haijuan Tang; Hongxia Lan; Hongsheng Zhang

In the present paper, we identified and cloned OsDHODH1 encoding a putative cytosolic dihydroorotate dehydrogenase (DHODH) in rice. Expression analysis indicated that OsDHODH1 is upregulated by salt, drought and exogenous abscisic acid (ABA), but not by cold. By prokaryotic expression, we determined the enzymatic activity of OsDHODH1 and found that overproduction of OsDHODH1 significantly improved the tolerance of Escherichia coli cells to salt and osmotic stresses. Overexpression of the OsDHODH1 gene in rice increased the DHODH activity and enhanced plant tolerance to salt and drought stresses as compared with wild type and OsDHODH1-antisense transgenic plants. Our findings reveal, for the first time, that cytosolic dihydroorotate dehydrogenase is involved in plant stress response and that OsDHODH1 could be used in engineering crop plants with enhanced tolerance to salt and drought.


Molecular Biotechnology | 2012

ENAC1, a NAC Transcription Factor, is an Early and Transient Response Regulator Induced by Abiotic Stress in Rice (Oryza sativa L.)

Hui Sun; Xi Huang; Hongxia Lan; Ji Huang; Hongsheng Zhang

The plant-specific NAC (NAM, ATAF, and CUC)-domain proteins play important roles in plant development and stress responses. In this research, a full-length cDNA named ENAC1 (early NAC-domain protein induced by abiotic stress 1) was isolated from rice. ENAC1 possess one NAC domain in the N-terminus. Comparative time-course expression analysis indicated that ENAC1 expression, similar with OsDREB1A, was induced very quickly by various abiotic stresses including salt, drought, cold, and exogenous abscisic acid. However, the induction of ENAC1 by abiotic stress was transient and lasted up to 3 h, whereas that of OsDREB1A maintained longer. The promoter sequence of ENAC1 harbors several cis-elements including ABA response elements, but the well-known dehydration responsive element/C-repeat element is absent. The ENAC1-GFP (green fluorescent protein) fusion protein was localized in the nucleus of rice protoplast cell. Yeast hybrid assays revealed that ENAC1 was a transcription activator and bound to NAC recognition sequence (NACRS). Co-expression analysis suggested that ENAC1 co-expressed with a number of stress-related genes. Taken together, ENAC1 may be an early transcription activator of stress responses and function in the regulation of NACRS-mediated gene expression under abiotic stress.


PLOS ONE | 2015

Quantitative Proteomic Analysis of the Rice (Oryza sativa L.) Salt Response

Jianwen Xu; Hongxia Lan; Huimin Fang; Xi Huang; Hongsheng Zhang; Ji Huang

Salt stress is one of most serious limiting factors for crop growth and production. An isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approach was used to analyze proteomic changes in rice shoots under salt stress in this study. A total of 56 proteins were significantly altered and 16 of them were enriched in the pathways of photosynthesis, antioxidant and oxidative phosphorylation. Among these 16 proteins, peroxiredoxin Q and photosystem I subunit D were up-regulated, while thioredoxin M-like, thioredoxin x, thioredoxin peroxidase, glutathione S-transferase F3, PSI subunit H, light-harvesting antenna complex I subunits, chloroplast chaperonin, vacuolar ATP synthase subunit H, and ATP synthase delta chain were down-regulated. Moreover, physiological data including total antioxidant capacity, peroxiredoxin activity, chlorophyll a/b content, glutathione S-transferase activity, reduced glutathione content and ATPase activity were consistent with changes in the levels of these proteins. The levels of the mRNAs encoding these proteins were also analyzed by real-time quantitative reverse transcription PCR, and approximately 86% of the results were consistent with the iTRAQ data. Importantly, our data suggest the important role of PSI in balancing energy supply and ROS generation under salt stress. This study provides information for an improved understanding of the function of photosynthesis and PSI in the salt-stress response of rice.


Journal of Experimental Botany | 2016

An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa)

Ye Zhang; Hongxia Lan; Qiaolin Shao; Ruqin Wang; Hui Chen; Haijuan Tang; Hongsheng Zhang; Ji Huang

The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice.


BMC Plant Biology | 2015

The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons

Xiuying Gao; Xiaojun Zhang; Hongxia Lan; Ji Huang; Jianfei Wang; Hongsheng Zhang

BackgroundGrain length, as a critical trait for rice grain size and shape, has a great effect on grain yield and appearance quality. Although several grain size/shape genes have been cloned, the genetic interaction among these genes and the molecular mechanisms of grain size/shape architecture have not yet to be explored.ResultsTo investigate the genetic interaction between two major grain length loci of rice, GS3 and qGL3, we developed two near-isogenic lines (NILs), NIL-GS3 (GS3/qGL3) and NIL-qgl3 (gs3/qgl3), in the genetic background of 93–11 (gs3/qGL3) by conventional backcrossing and marker-assisted selection (MAS). Another NIL-GS3/qgl3 (GS3/qgl3) was developed by crossing NIL-GS3 with NIL-qgl3 and using MAS. By comparing the grain lengths of 93–11, NIL-GS3, NIL-qgl3 and NIL-GS3/qgl3, we investigated the effects of GS3, qGL3 and GS3 × qGL3 interaction on grain length based on two-way ANOVA. We found that GS3 and qGL3 had additive effects on rice grain length regulation. Comparative analysis of primary panicle transcriptomes in the four NILs revealed that the genes affected by GS3 and qGL3 partially overlapped, and both loci might be involved in brassinosteroid signaling.ConclusionOur data provide new information to better understand the rice grain length regulation mechanism and help rice breeders improve rice yield and appearance quality by molecular design breeding.


Plant Signaling & Behavior | 2016

Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress

Jianwen Xu; Xi Huang; Hongxia Lan; Hongsheng Zhang; Ji Huang

ABSTRACT Salt stress is an important environmental condition limiting the agricultural production. The reprogram of protein expression is one of the strategies of plants to cope with salt stress. We have previously analyzed the photosynthesis, antioxidant and oxidative phosphorylation involved in the carbon metabolism and the redox metabolism in rice seedlings under salt stress. Here, we focused on the proteins involved in nitrogen metabolic response. As it was reported that the nitrite uptake was enhanced in Arabidopsis PII knock-out mutants, the down-regulation of P-II nitrogen sensing protein in rice probably contributes to the accumulation of amino acids under stress. In addition, the protein synthesis is limited by the decrease of related proteins, and more amino acids could be used as the compatible solute. Hence, our study indicates that the rearrangement of nitrogen metabolism under salt stress could accumulate more amino acids as the compatible solute rather than the components of proteins. This study provides information for an improved understanding of nitrogen metabolic response to salt stress in rice.


Molecular Biology Reports | 2013

Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.).

Hongxia Lan; Zhoufei Wang; Qi-Hong Wang; Mei-Mei Wang; Yongmei Bao; Ji Huang; Hongsheng Zhang

Collaboration


Dive into the Hongxia Lan's collaboration.

Top Co-Authors

Avatar

Hongsheng Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ji Huang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haijuan Tang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yongmei Bao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianfei Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xi Huang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hui Sun

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mei-Mei Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaojun Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhoufei Wang

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge