Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongxia Wang is active.

Publication


Featured researches published by Hongxia Wang.


PLOS ONE | 2013

Functional Characterization of Dihydroflavonol-4-Reductase in Anthocyanin Biosynthesis of Purple Sweet Potato Underlies the Direct Evidence of Anthocyanins Function against Abiotic Stresses

Hongxia Wang; Weijuan Fan; Hong Li; Jun Yang; Jirong Huang; Peng Zhang

Dihydroflavonol-4-reductase (DFR) is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam.) cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi) using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions.


Plant Science | 2011

Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.).

Jun Yang; Huiping Bi; Weijuan Fan; Min Zhang; Hongxia Wang; Peng Zhang

Efficient Agrobacterium tumefaciens-mediated transformation was developed using embryogenic suspension cell cultures of elite sweet potato (Ipomoea batatas [L.] Lam.) cultivars, including Ayamurasaki, Sushu2, Sushu9, Sushu11, Wanshu1, Xushu18 and Xushu22. Embryogenic suspension cultures were established in LCP medium using embryogenic calli induced from apical or axillary buds on an induction medium containing 2 mg l(-1) 2,4-D. Suspension cultures were co-cultivated with A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301 with the hpt gene as a selectable marker and an intron-interrupted uidA gene as a visible marker. Several key steps of the sweet potato transformation system have been investigated and optimized, including the appropriate antibiotics and their concentrations for suppressing Agrobacterium growth and the optimal doses of hygromycin for transformant selection. A total of 485 putative transgenic plant lines were produced from the transformed calli via somatic embryogenesis and germination to plants under 10 mg l(-1) hygromycin and 200 mg l(-1) cefotaxime. PCR, GUS and Southern blot analyses of the regenerated plants showed that 92.35% of them were transgenic. The number of T-DNA insertions varied from one to three in most transgenic plant lines. Plants showed 100% survival when 308 transgenics were transferred to soil in the greenhouse and then to the field. Most of them were morphologically normal, with the production of storage roots after 3 months of cultivation in the greenhouse or fields. The development of such a robust transformation method suitable to a range of sweet potato genotypes not only provides a routine tool for genetic improvement via transgenesis but also allows us to conduct a functional verification of endogenous genes in sweet potato.


Nature plants | 2017

Haplotype-resolved sweet potato genome traces back its hexaploidization history

Jun Yang; M-Hossein Moeinzadeh; Heiner Kuhl; Johannes Helmuth; Peng Xiao; Stefan A. Haas; Guiling Liu; Jianli Zheng; Zhe Sun; Weijuan Fan; Gaifang Deng; Hongxia Wang; Fenhong Hu; Shan-Shan Zhao; Alisdair R. Fernie; Stefan Boerno; Bernd Timmermann; Peng Zhang; Martin Vingron

Here we present the 15 pseudochromosomes of sweet potato, Ipomoea batatas, the seventh most important crop in the world and the fourth most significant in China. By using a novel haplotyping method based on genome assembly, we have produced a half haplotype-resolved genome from ~296 Gb of paired-end sequence reads amounting to roughly 67-fold coverage. By phylogenetic tree analysis of homologous chromosomes, it was possible to estimate the time of two recent whole-genome duplication events as occurring about 0.8 and 0.5 million years ago. This half haplotype-resolved hexaploid genome represents the first successful attempt to investigate the complexity of chromosome sequence composition directly in a polyploid genome, using sequencing of the polyploid organism itself rather than any of its simplified proxy relatives. Adaptation and application of our approach should provide higher resolution in future genomic structure investigations, especially for similarly complex genomes.Assembly of polyploid plant genomes has been technically challenging. Now, a study presents a half haplotype-resolved hexaploid genome of sweet potato, Ipomoea batatas, using a novel haplotyping method.


Physiologia Plantarum | 2015

Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas)

Weijuan Fan; Gaifang Deng; Hongxia Wang; Hongxia Zhang; Peng Zhang

Salinity and low temperature are the main limiting factors for sweet potato (Ipomoea batatas) growth and agricultural productivity. Various studies have shown that plant NHX-type antiporter plays a crucial role in regulating plant tolerance to salt stress by intracellular Na(+) compartmentalization. The Arabidopsis thaliana AtNHX1 gene that encodes a vacuolar Na(+) /H(+) antiporter was introduced into the sweet potato cultivar Xushu-22 by Agrobacterium-mediated transformation to confer abiotic stress tolerance. Stable insertion of AtNHX1 into the sweet potato genome and its expression was confirmed by Southern blot and reverse transcription-polymerase chain reaction (RT-PCR). A remarkably higher Na(+) /H(+) exchange activity of tonoplast membrane from transgenic sweet potato lines (NOE) in comparison with wild-type (WT) plants confirmed the vacuolar antiporter function in mediating Na(+) /H(+) exchange. Under salt stress, NOE plants accumulated higher Na(+) and K(+) levels in their tissues compared with WT plants, maintaining high K(+) /Na(+) ratios. Consequently, NOE plants showed enhanced protection against cell damage due to the increased proline accumulation, preserved cell membrane integrity, enhanced reactive oxygen species (ROS) scavenging (e.g. increased superoxide dismutase activity), and reduced H2 O2 and malondialdehyde (MDA) production. Moreover, the transgenic plants showed improved cold tolerance through multiple mechanisms of action, revealing the first molecular evidence for NHX1 function in cold response. The transgenic plants showed better biomass production and root yield under stressful conditions. These findings demonstrate that overexpressing AtNHX1 in sweet potato renders the crop tolerant to both salt and cold stresses, providing a greater capacity for the use of AtNHX1 in improving crop performance under combined abiotic stress conditions.


Scientific Reports | 2016

Altered Phenylpropanoid Metabolism in the Maize Lc -Expressed Sweet Potato ( Ipomoea batatas ) Affects Storage Root Development

Hongxia Wang; Jun Yang; Min Zhang; Weijuan Fan; Nurit Firon; Sitakanta Pattanaik; Ling Yuan; Peng Zhang

There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis.


bioRxiv | 2016

The haplotype-resolved genome sequence of hexaploid Ipomoea batatas reveals its evolutionary history

Jun Yang; M-Hossein Moeinzadeh; Heiner Kuhl; Johannes Helmuth; Peng Xiao; Guiling Liu; Jianli Zheng; Zhe Sun; Weijuan Fan; Gaifang Deng; Hongxia Wang; Fenhong Hu; Alisdair R. Fernie; Bernd Timmermann; Peng Zhang; Martin Vingron

Although the sweet potato, Ipomoea batatas, is the seventh most important crop in the world and the fourth most significant in China, its genome has not yet been sequenced. The reason, at least in part, is that the genome has proven very difficult to assemble, being hexaploid and highly polymorphic; it has a presumptive composition of two B1 and four B2 component genomes (B1B1B2B2B2B2). By using a novel haplotyping method based on de novo genome assembly, however, we have produced a half haplotype-resolved genome from ∼267Gb of paired-end sequence reads amounting to roughly 60-fold coverage. By phylogenetic tree analysis of homologous chromosomes, it was possible to estimate the time of two whole genome duplication events as occurring about 525,000 and 341,000 years ago. Our analysis also identified many clusters of genes for specialized compounds biosynthesis in this genome. This half haplotype-resolved hexaploid genome represents the first successful attempt to investigate the complexity of chromosome sequence composition directly in a polyploid genome, using direct sequencing of the polyploid organism itself rather than of any of its simplified proxy relatives. Adaptation and application of our approach should provide higher resolution in future genomic structure investigations, especially for similarly complex genomes.


Plant Biotechnology Journal | 2017

H+-pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]

Weijuan Fan; Hongxia Wang; Yinliang Wu; Nan Yang; Jun Yang; Peng Zhang

Summary Iron (Fe) deficiency is one of the most common micronutrient deficiencies limiting crop production globally, especially in arid regions because of decreased availability of iron in alkaline soils. Sweet potato [Ipomoea batatas (L.) Lam.] grows well in arid regions and is tolerant to Fe deficiency. Here, we report that the transcription of type I H+‐pyrophosphatase (H+‐PPase) gene IbVP1 in sweet potato plants was strongly induced by Fe deficiency and auxin in hydroponics, improving Fe acquisition via increased rhizosphere acidification and auxin regulation. When overexpressed, transgenic plants show higher pyrophosphate hydrolysis and plasma membrane H+‐ATPase activity compared with the wild type, leading to increased rhizosphere acidification. The IbVP1‐overexpressing plants showed better growth, including enlarged root systems, under Fe‐sufficient or Fe‐deficient conditions. Increased ferric precipitation and ferric chelate reductase activity in the roots of transgenic lines indicate improved iron uptake, which is also confirmed by increased Fe content and up‐regulation of Fe uptake genes, e.g. FRO2,IRT1 and FIT. Carbohydrate metabolism is significantly affected in the transgenic lines, showing increased sugar and starch content associated with the increased expression of AGPase and SUT1 genes and the decrease in β‐amylase gene expression. Improved antioxidant capacities were also detected in the transgenic plants, which showed reduced H2O2 accumulation associated with up‐regulated ROS‐scavenging activity. Therefore, H+‐PPase plays a key role in the response to Fe deficiency by sweet potato and effectively improves the Fe acquisition by overexpressing IbVP1 in crops cultivated in micronutrient‐deficient soils.


bioRxiv | 2018

UDP-glucose:anthocyanidin 3-O-glucoside-2\'\'-O-glucosyltransferase catalyzes further glycosylation of anthocyanins in purple Ipomoea batatas

Hongxia Wang; Chengyuan Wang; Weijuan Fan; Jun Yang; Ingo Appelhagen; Yinliang Wu; Peng Zhang

Glycosylation contributes to the diversity and stability of anthocyanins in plants. The process is catalyzed by various glucosyltransferases using different anthocyanidin aglycones and glycosyl donors. An anthocyanidin 3-O-glucoside-2”-O-glucosyltransferase (3GGT) from purple sweetpotato (cv. Ayamurasaki) served for the catalytic conversion of anthocyanidin 3-O-glucoside into anthocyanidin 3-O-sophoroside, which is functionally different from the 3GGT ortholog of Arabidopsis. The phylogenetic analysis indicates regioselectivity of 3GGT using UDP-xylose or UDP-glucose as the glycosyl is divergent between Convolvulaceae and Arabidopsis. Homology-based protein modeling and site-directed mutagenesis of Ib3GGT and At3GGT suggested that the Thr-138 of Ib3GGT is a key amino acid residue for UDP-glucose recognition and plays a major role in sugar donor selectivity. The wild type and ugt79b1 mutants of Arabidopsis plants overexpressing Ib3GGT produced the new component cyanidin 3-O-sophoroside. Moreover, Ib3GGT expression was associated with anthocyanin accumulation in different tissues during Ayamurasaki plant development and was regulated by the transcription factor IbMYB1. The localization assay of Ib3GGT showed that further glycosylation occurs in the cytosol and not endoplasmic reticulum. The present study revealed the function of Ib3GGT in further glycosylation of anthocyanins and its Thr-138 is the key amino acid residue for UDP-glucose recognition.


Journal of Experimental Botany | 2018

A novel glycosyltransferase catalyses the transfer of glucose to glucosylated anthocyanins in purple sweet potato

Hongxia Wang; Chengyuan Wang; Weijuan Fan; Jun Yang; Ingo Appelhagen; Yinliang Wu; Peng Zhang

Sweet potato Ib3GGT catalyses anthocyanidin 3-O-glucosides into anthocyanidin 3-O-sophorosides using UDP-glucose as the sugar donor, and Thr-138 is the key residue that determines the sugar-donor specificity of the cytosolic enzyme.


Journal of the Science of Food and Agriculture | 2017

Profiling of anthocyanins in transgenic purple-fleshed sweet potatoes by HPLC-MS/MS

Jing-Qiu Ge; Yijie Hu; Hongxia Wang; Yuanshe Huang; Peng Zhang; Zhihua Liao; Min Chen

BACKGROUND Anthocyanins in purple-fleshed sweet potato (PSP) are beneficial to human health. The leaf color (Lc) gene is a transcription factor involved in regulating anthocyanin biosynthesis. The anthocyanin profiles of wild-type PSP of Ayamurasaki and its three Lc-transgenic lines were investigated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). In vitro antioxidant activities of wild-type and Lc-transgenic lines, including reducing power activity, DPPH radical scavenging activity, hydroxyl radical scavenging activity, linoleic acid autoxidation inhibition activity, ABTS free radical scavenging activity and oxygen radical absorbance capacity activity, were measured. RESULTS The results showed that the total anthocyanin contents increased 1.5-1.9 times in three transgenic lines compared with that in wild-type PSP. Seventeen anthocyanins were found in wild-type PSP, while 19 in Lc-transgenic lines including cyanidin-based, peonidin-based and pelargonidin-based anthocyanins. Three pelargonidin-based anthocyanins were detected in three Lc-transgenic lines. Among them, the relative contents of cyanidin-based and pelargonidin-based anthocyanins increased 1.9-2.0 and 3.4-4.5 times respectively, while peonidin-based anthocyanins decreased 1.8-1.9 times in Lc-transgenic lines, compared with wild-type PSP. PSP from wild-type Ayamurasaki and three Lc-transgenic lines exhibited potent antioxidant activities, whereas there was no distinct difference among them. CONCLUSION The transgene Lc significantly increased the content of total anthocyanins and remarkably changed the anthocyanin profiles in Ayamurasaki. Such novel and high content of anthocyanins obtained in the Lc-transgenic lines with potent antioxidant activities may provide unique functional products with potential helpful for human health.

Collaboration


Dive into the Hongxia Wang's collaboration.

Top Co-Authors

Avatar

Peng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weijuan Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yinliang Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gaifang Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fenhong Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Min Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenzhi Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge