Hongxia Wu
Harbin Veterinary Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hongxia Wu.
Infection, Genetics and Evolution | 2015
Jin Tian; Xiaozhan Zhang; Hongxia Wu; Chunguo Liu; Jiasen Liu; Xiaoliang Hu; Liandong Qu
Feline calicivirus (FCV) is a highly contagious pathogen with a widespread distribution. Although the cat genome has been sequenced, little is known about innate immunity in cats, which limits the understanding of FCV pathogenesis. To investigate the IFN-β response during FCV infection in CRFK cells, we first cloned and identified the feline IFN-β promoter sequence and the positive regulatory domain (PRD) motifs, which shared a high similarity with human and porcine IFN-β promoters. Next, we found that infections with FCV strains F9, Bolin and HRB-SS at the 100 or 1000 TCID50 doses could not activate the IFN-β promoter at 12 and 24h post-infection. Only strain 2280 infection at a 1000 TCID50 dose could induce the IFN-β promoter mainly through IRF3 and partially through NF-κB, at 24h post-infection. However, the IFN response occurred much later and was smaller in magnitude compared with that following Sendai virus (SeV) infection. Further, we found that induction of the IFN-β promoter by FCV 2280 infection depended on dsRNA and not on viral proteins. Finally, we examined whether the IFN-β response had an antiviral effect against FCV replication. The over-expression of IFN-β before exposure to the virus reduced viral yields by a range of 2.2-3.2 log10TCID50, but its over-expression at 12h post-infection did not inhibit FCV replication. Our results indicate that some FCV strains cannot induce IFN-β expression in vitro, which may be a potential factor for FCV survival in cats. Whether this is important in evading the host interferon response in vivo must be investigated.
Infection, Genetics and Evolution | 2015
Xiaozhan Zhang; Hongxia Wu; Chunguo Liu; Jin Tian; Liandong Qu
Abstract Viral infections activate many host signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which has recently attracted considerable interest due to its central role in modulating virus replication. This study demonstrated that the sero-type 3 reovirus strain Masked Palm Civet/China/2004 (MPC/04) could transiently activate the PI3K/Akt pathway in A549 cells at earlier time points of infection. The blockage of PI3K/Akt activation increased viral RNA synthesis and yield. The role of the downstream effectors MDM2/p53 of PI3K/Akt in regulating reovirus replication was further analyzed. We found that during reovirus infection, the level of phosphorylated MDM2 (p-MDM2) was increased and the expression of p53 was reduced. In addition, the blockage of PI3K/Akt by Ly294002 or knockdown of Akt by siRNA reduced the level of p-MDM2 and increased the level of p53. Both indicated that the downstream effectors MDM2/p53 of PI3K/Akt were activated. Pre-treatment with Nutlin, which can destroy MDM2 and p53 cross-talk and increase the expression of p53 RNA and protein, dose-dependently enhanced reovirus replication. Additionally, the overexpression of p53 alone also supported reovirus replication, and knockdown of p53 significantly inhibited viral replication. This study demonstrates that PI3K/Akt/p53 activated by mammalian reovirus can serve as a pathway for inhibiting virus replication/infection, yet the precise mechanism of this process remains under further investigation.
Frontiers in Microbiology | 2015
Jin Tian; Xiaozhan Zhang; Hongxia Wu; Chunguo Liu; Zhijie Li; Xiaoliang Hu; Shuo Su; Lin-Fa Wang; Liandong Qu
Many host cellular signaling pathways were activated and exploited by virus infection for more efficient replication. The PI3K/Akt pathway has recently attracted considerable interest due to its role in regulating virus replication. This study demonstrated for the first time that the mammalian reovirus strains Masked Palm Civet/China/2004 (MPC/04) and Bat/China/2003 (B/03) can induce transient activation of the PI3K/Akt pathway early in infection in vitro. When UV-treated, both viruses activated PI3K/Akt signaling, indicating that the virus/receptor interaction was sufficient to activate PI3K/Akt. Reovirus virions can use both clathrin- and caveolae-mediated endocytosis, but only chlorpromazine, a specific inhibitor of clathrin-mediated endocytosis, or siRNA targeting clathrin suppressed Akt phosphorylation. We also identified the upstream molecules of the PI3K pathway. Virus infection induced phosphorylation of focal adhesion kinase (FAK) but not Gab1, and blockage of FAK phosphorylation suppressed Akt phosphorylation. Blockage of PI3K/Akt activation increased virus RNA synthesis and viral yield. We also found that reovirus infection activated the IFN-stimulated response element (ISRE) in an interferon-independent manner and up-regulated IFN-stimulated genes (ISGs) via the PI3K/Akt/EMSY pathway. Suppression of PI3K/Akt activation impaired the induction of ISRE and down-regulated the expression of ISGs. Overexpression of ISG15 and Viperin inhibited virus replication, and knockdown of either enhanced virus replication. Collectively, these results demonstrate that PI3K/Akt activated by mammalian reovirus serves as a pathway for sensing and then inhibiting virus replication/infection.
Veterinary Microbiology | 2016
Jin Tian; Dafei Liu; Yongxiang Liu; Hongxia Wu; Yanmei Jiang; Shaopo Zu; Chunguo Liu; Xue Sun; Jiasen Liu; Liandong Qu
Feline calicivirus (FCV) is a virus that causes respiratory disease in cats. In this study, the FCV TIG-1 was isolated from Siberian tiger feces collected in 2014 in Heilongjiang Province, China. Phylogenetic analysis among TIG-1 and other FCVs showed that TIG-1 does not share the same lineage with other FCV isolates from Heilongjiang or other regions in China but is located in the same cluster with the FCV strain Urbana, which was isolated from the United States. The growth kinetics in vitro and the pathogenicity in cats between TIG-1 and the domestic cat-origin FCV strain F9 (vaccine strain) and strain 2280 were compared. We found that the growth kinetics of strains TIG-1 and 2280 were faster than that of strain F9 from 12h to 36h post-infection, indicating that strains TIG-1 and 2280 produce infectious virions and reach peak yields earlier. Challenge experiments in cats showed that TIG-1 grew faster than the other two strains in the lungs of cats and that TIG-1 is a virulent FCV with 100% morbidity and lethality. In addition, the histopathological results showed that the virulent TIG-1 strain directly led to severe lung tissue damage and indirectly led to intestinal damage. The results presented here show that a tiger-origin FCV exhibits high virulence in cats.
Veterinary Immunology and Immunopathology | 2016
Xiaozhan Zhang; Hongxia Wu; Chunguo Liu; Xue Sun; Shaopo Zu; Jin Tian; Liandong Qu; Shoujun Li
Stimulator of interferon gene (STING) mediates the induction of type I IFN responses. In this study, feline STING was cloned. Full-length STING contains 1134bp and encodes a 377 amino acid product that shares the highest similarity with bovine STING. STING is primarily expressed in the spleen, lungs and lymph nodes. An examination of its cellular localization indicated that STING is localized in the endoplasmic reticulum (ER) and contains two ER retention motifs, RPR and KKNF. Overexpressing STING induced the IFN response via the IRF3, NF-κB and AP-1 pathways. Moreover, the C-terminus of STING was required for the activation of IRF3 and AP-1. Knockdown of STING impaired the IFN-β response triggered by poly(dA:dT), poly(I:C) or SeV. Finally, STING activated the ISRE promoter and increased the expression of ISG15 and viperin. Collectively, our findings indicate that STING is involved in the regulation of the IFN-β pathway in felines.
Archives of Virology | 2015
Hongxia Wu; Xiaozhan Zhang; Chunguo Liu; Dafei Liu; Jiasen Liu; Jin Tian; Liandong Qu
Feline calicivirus (FCV) is a highly contagious pathogen that causes oral and upper respiratory tract disease in cats. Despite widespread vaccination, the prevalence of FCV remains high. Furthermore, a high gene mutation rate has led to the emergence of variants, and some infections are lethal. To date, there is no effective antiviral drug available for treating FCV infection. Here, we show that lithium chloride (LiCl) effectively suppresses the replication of FCV strain F9 in Crandell-Reese feline kidney (CRFK) cells. The antiviral activity of LiCl occurred primarily during the early stage of infection and in a dose-dependent manner. LiCl treatment also inhibited the cytopathic effect. LiCl treatment exhibited a strong inhibitory effect against a panel of other two reference strains and two recent FCV isolates from China. These results demonstrate that LiCl might be an effective anti-FCV drug for controlling FCV disease. Further studies are required to explore the antiviral activity of LiCl against FCV replication in vivo.
Viruses | 2016
Hongxia Wu; Shaopo Zu; Xue Sun; Yongxiang Liu; Jin Tian; Liandong Qu
Feline Calicivirus (FCV) infection results in the inhibition of host protein synthesis, known as “shut-off”. However, the precise mechanism of shut-off remains unknown. Here, we found that the FCV strain 2280 proteinase-polymerase (PP) protein can suppress luciferase reporter gene expression driven by endogenous and exogenous promoters. Furthermore, we found that the N-terminal 263 aa of PP (PPN-263) determined its shut-off activity using the expression of truncated proteins. However, the same domain of the FCV strain F9 PP protein failed to inhibit gene expression. A comparison between strains 2280 and F9 indicated that Val27, Ala96 and Ala98 were key sites for the inhibition of host gene expression by strain 2280 PPN-263, and PPN-263 exhibited the ability to shut off host gene expression as long as it contained any two of the three amino acids. Because the N-terminus of the PP protein is required for its proteinase and shut-off activities, we investigated the ability of norovirus 3C-like proteins (3CLP) from the GII.4-1987 and -2012 isolates to interfere with host gene expression. The results showed that 3CLP from both isolates was able to shut off host gene expression, but 3CLP from GII.4-2012 had a stronger inhibitory activity than that from GII.4-1987. Finally, we found that 2280 PP and 3CLP significantly repressed reporter gene transcription but did not affect mRNA translation. Our results provide new insight into the mechanism of the FCV-mediated inhibition of host gene expression.
Archives of Virology | 2016
Hongxia Wu; Yongxiang Liu; Shaopo Zu; Xue Sun; Chunguo Liu; Dafei Liu; Xiaozhan Zhang; Jin Tian; Liandong Qu
Feline calicivirus (FCV) often causes respiratory tract and oral disease in cats and is a highly contagious virus. Widespread vaccination does not prevent the spread of FCV. Furthermore, the low fidelity of the RNA-dependent RNA polymerase of FCV leads to the emergence of new variants, some of which show increased virulence. Currently, few effective anti-FCV drugs are available. Here, we found that germacrone, one of the main constituents of volatile oil from rhizoma curcuma, was able to effectively reduce the growth of FCV strain F9 in vitro. This compound exhibited a strong anti-FCV effect mainly in the early phase of the viral life cycle. The antiviral effect depended on the concentration of the drug. In addition, germacrone treatment had a significant inhibitory effect against two other reference strains, 2280 and Bolin, and resulted in a significant reduction in the replication of strains WZ-1 and HRB-SS, which were recently isolated in China. This is the first report of antiviral effects of germacrone against a calicivirus, and extensive in vivo research is needed to evaluate this drug as an antiviral therapeutic agent for FCV.
International Journal of Biological Macromolecules | 2017
Jin Tian; Xiaoliang Hu; Dafei Liu; Hongxia Wu; Liandong Qu
Abstract Inonotus obliquus polysaccharides (IOPs) are a potential drug for the prevention and treatment of cancer, cardiopathy, diabetes, AIDs, pancreatitis and other diseases. In this study, we found that IOP can act as a broad-spectrum antiviral drug against feline viruses in the in vitro experiment. Using cell models of feline calicivirus (FCV), we demonstrated that IOP treatment was capable of exhibiting anti-FCV strain F9 activity in cell-based assays and also showed low cytotoxicity. Investigation of the mechanism of action of the compound revealed that IOP treatment induces its inhibitory actions directly on virus particles through blocking viral binding/absorpting. The inhibitory activity against other FCV isolates from China was also identified. More importantly, we found that IOP exhibited broad-spectrum antiviral activity against the feline herpesvirus 1, feline influenza virus H3N2 and H5N6, feline panleukopenia virus and feline infectious peritonitis virus that can contribute to respiratory and gastrointestinal diseases in cats. These findings suggest that IOP may be a potential broad-spectrum antiviral drug against feline viruses.
Viruses | 2017
Hongtao Kang; Dafei Liu; Jin Tian; Xiaoliang Hu; Xiaozhan Zhang; Hang Yin; Hongxia Wu; Chunguo Liu; Dongchun Guo; Zhijie Li; Qian Jiang; Jiasen Liu; Liandong Qu
Feline panleucopenia virus (FPV) is a highly infectious pathogen that causes severe diseases in pets, economically important animals and wildlife in China. Although FPV was identified several years ago, little is known about how it overcomes the host innate immunity. In the present study, we demonstrated that infection with the FPV strain Philips-Roxane failed to activate the interferon β (IFN-β) pathway but could antagonize the induction of IFN stimulated by Sendai virus (SeV) in F81 cells. Subsequently, by screening FPV nonstructural and structural proteins, we found that only nonstructural protein 2 (NS2) significantly suppressed IFN expression. We demonstrated that the inhibition of SeV-induced IFN-β production by FPV NS2 depended on the obstruction of the IFN regulatory factor 3 (IRF3) signaling pathway. Further, we verified that NS2 was able to target the serine/threonine-protein kinase TBK1 and prevent it from being recruited by stimulator of interferon genes (STING) protein, which disrupted the phosphorylation of the downstream protein IRF3. Finally, we identified that the C-terminus plus the coiled coil domain are the key domains of NS2 that are required for inhibiting the IFN pathway. Our study has yielded strong evidence for the FPV mechanisms that counteract the host innate immunity.