Hongxun Zhang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hongxun Zhang.
Bioresource Technology | 2003
Zhisheng Yu; Hongxun Zhang
The acid hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol sulfuric acid per liter pyrolysate using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol in 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol in 18 h. The results showed that the acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by S. cerevisiae (R) in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.
Science of The Total Environment | 2012
Ruyin Liu; Zhisheng Yu; Hongguang Guo; Miaomiao Liu; Hongxun Zhang; Min Yang
In order to understand the microbial communities in drinking water biofilms, both eukaryotic and bacterial communities in three faucet biofilms were characterized by 454 pyrosequencing and quantitative PCR approaches. Microbial assemblages of the biofilms were dominated by bacteria, with Sphingomonadales, Rhizobiales, and Burkholderiales comprising the major bacterial populations. Although about 2 years of biofilm development occurred, the microbial community at site WSW still demonstrates the characteristics of a young biofilm community, e.g. low biomass, abundant aggregating bacteria (Blastomonas spp. and Acidovorax spp.) etc. Hartmannella of amoebae was the dominant eukaryotic predator in the biofilms, and correlated closely with biofilm bacterial biomass. Nonetheless, there was no obvious association of pathogens with amoebae in the faucet biofilms. In contrast, residual chlorine seems to be a dominant factor impacting the abundance of Legionella and Mycobacterium, two primary potential opportunistic pathogens detected in all faucet biofilms.
Journal of Environmental Sciences-china | 2007
Qing Hu; Hong-yan Qi; Zeng Jh; Hongxun Zhang
Five samples of soil collected from a lead and zinc mine were used to assess the effect of combined contamination of heavy metals on soil bacterial communities using a polyphasic approach including characterization of isolates by culture method, community level catabolic profiling in BIOLOG GN microplates, and genetic community fingerprinting by denaturing gradient gel electrophoresis of 16S rDNA fragments amplified by PCR from community DNA (PCR-DGGE). The structure of the bacterial community was affected to a certain extent by heavy metals. The PCR-DGGE analysis of 16S rRNA genes showed that there were significant differences in the structure of the microbial community among the soil samples, which were related to the contamination levels. The number of bacteria and the number of denaturing gradient gel electrophoresis (DGGE) bands in the soils increased with increasing distance from the lead and zinc mine tailing, whereas the concentration of lead (Pb) and cadmium (Cd) was decreased. Heavily polluted soils could be characterized by a community that differs from those of lightly polluted soils in richness and structure of dominating bacterial populations. The clustering analysis of the DGGE profiles showed that the bacteria in all the five samples of soil belonged to three clusters. The data from the BIOLOG analysis also showed the same result. This study showed that heavy metal contamination decreased both the biomass and diversity of the bacterial community in soil.
Biomass & Bioenergy | 2003
Zhisheng Yu; Hongxun Zhang
Abstract Cellulosic pyrolysate containing levoglucosan was chemically hydrolyzed and a maximum glucose yield of 17.35% was obtained by the hydrolysis with 0.2 mol/l H2SO4 at 121°C for 20 min . The total initial glucose was maintained at 41.9 g/l by diluting the hydrolysate. Ten detoxification methods were employed including either single addition of solid Ca(OH)2 (to pH 6.0 or 10.4) or its combinations with absorbents. The neutralization+diatomite shaking method gave the hydrolysate which was most completely fermented by Saccharomyces cerevisiae and Pichia sp. YZ-1. The maximal ethanol yield of 0.45 g/g glucose was obtained by S. cerevisiae.
Water Research | 2014
Wenfang Lin; Zhisheng Yu; Hongxun Zhang; Ian P. Thompson
The dynamics of bacterial and eukaryotic community associated with each step of a water purification plant in China was investigated using 454 pyrosequencing and qPCR based approaches. Analysis of pyrosequencing revealed that a high degree diversity of bacterial and eukaryotic communities is present in the drinking water treatment process before sand filtration. In addition, the microbial compositions of the biofilm in the sand filters and those of the water of the putatively clear tanks were distinct, suggesting that sand filtration and chlorination treatments played primary roles in removing exposed microbial communities. Potential pathogens including Acinetobacter, Clostridium, Legionella, and Mycobacterium, co-occurred with protozoa such as Rhizopoda (Hartmannellidae), and fungi such as Penicillium and Aspergillus. Furthermore, this study supported the ideas based on molecular level that biofilm communities were different from those in corresponding water samples, and that the concentrations of Mycobacterium spp., Legionella spp., and Naegleria spp. in the water samples declined with each step of the water treatment process by qPCR. Overall, this study provides the first detailed evaluation of bacterial and eukaryotic diversity at each step of an individual potable water treatment process located in China.
Frontiers of Environmental Science & Engineering in China | 2014
Kang Xiao; Ying Xu; Shuai Liang; Ting Lei; Jianyu Sun; Xianghua Wen; Hongxun Zhang; Chunsheng Chen; Xia Huang
China has been the forerunner of large-scale membrane bioreactor (MBR) application. Since the first large-scale MBR (⩾ 10 000 m3·d−1) was put into operation in 2006, the engineering implementation of MBR in China has attained tremendous development. This paper outlines the commercial application of MBR since 2006 and provides a variety of engineering statistical data, covering the fields of municipal wastewater, industrial wastewater, and polluted surface water treatment. The total treatment capacity of MBRs reached 1 × 106 m3·d−1 in 2010, and has currently exceeded 4.5 × 106 m3·d−1 with ∼75% of which pertaining to municipal wastewater treatment. The anaerobic/anoxic/aerobic-MBR and its derivative processes have been the most popular in the large-scale municipal application, with the process features and typical ranges of parameters also presented in this paper. For the treatment of various types of industrial wastewater, the configurations of the MBR-based processes are delineated with representative engineering cases. In view of the significance of the cost issue, statistics of capital and operating costs are also provided, including cost structure and energy composition. With continuous stimulation from the environmental stress, political propulsion, and market demand in China, the total treatment capacity is expected to reach 7.5 × 106 m3·d−1 by 2015 and a further expansion of the market is foreseeable in the next five years. However, MBR application is facing several challenges, such as the relatively high energy consumption. Judging MBR features and seeking suitable application areas should be of importance for the long-term development of this technology.
Fems Microbiology Letters | 2008
Baoguo Zhang; Zhihui Bai; Daniel Hoefel; Ling Tang; Zhiguang Yang; Guoqiang Zhuang; Jianzhou Yang; Hongxun Zhang
Although biological control agents (BCAs) have been used extensively for controlling insects and pathogens of plants, little is known regarding the effects of such agents on the indigenous microbial communities within the plant phyllosphere. We assessed the effect of the BCA Bacillus thuringiensis (Bt) on the microbial communities within the pepper plant phyllosphere using culture-independent methodologies. Phospholipid fatty acid (PLFA) analysis suggested that the bacterial and fungal biomass were not significantly affected following Bt application. However, principal component analysis of PLFA data indicated that Bt did change the phyllosphere microbial community structure significantly. 16S rRNA gene-directed PCR with denaturing gradient gel electrophoresis (DGGE) also suggested a significant change in the phyllosphere bacterial community structure following Bt inoculation. Phylogenetic analysis of excised DGGE bands suggested a change in bacterial phyla; bands from untreated samples predominantly belonged to the Firmicutes, while Gammaproteobacteria abounded in the treated samples.
Canadian Journal of Microbiology | 2012
Ruyin Liu; Zhisheng Yu; Hongxun Zhang; Min Yang; Baoyou Shi; Xinchun Liu
In this study, to give insight into the bacterial diversity of biofilms from full-scale drinking water distribution systems (DWDSs), the bacterial community compositions of biofilms from two urban DWDSs (Guangzhou and Beijing, China) were determined using a 16S rRNA gene library technique. Meanwhile, the occurrence and diversity of mycobacteria were also analyzed by a Mycobacterium -specific hsp gene assay. The biofilms from the full-scale DWDSs have complex bacterial populations. Proteobacteria was the common and predominant group in all biofilm samples, in agreement with previous reports. The community structures of bacteria at the three sites in Guangzhou DWDS were significantly different, despite the similar physicochemical properties of portable water. Some abundant and peculiar bacterial phylotypes were noteworthy, including Methylophilus , Massilia, and Planomicrobium , members of which are rarely found in DWDSs and their roles in DWDS biofilms are still unclear. The diversity of Mycobacterium species in biofilm samples was rather low. Mycobacterium arupense and Mycobacterium gordonae were the primary Mycobacterium species in Guangzhou and Beijing biofilms, respectively, indicating that M. arupense may be more resistant to chloride than M. gordonae.
Journal of Environmental Sciences-china | 2014
Ruyin Liu; Junge Zhu; Zhisheng Yu; DevRaj Joshi; Hongxun Zhang; Wenfang Lin; Min Yang
To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron).
Microbial Ecology | 2012
Juanli Yun; Guoqiang Zhuang; Anzhou Ma; Hongguang Guo; Yanfen Wang; Hongxun Zhang
The Zoige wetland of the Tibetan Plateau is a high-altitude tundra wetland and one of the biggest methane emission centers in China. In this study, methanotrophs with respect to community structure, abundance, and activity were investigated in peat soils collected in the vicinity of different marshland plants that dominate different regions of the wetland, including Polygonum amphibium, Carex muliensis, and Eleocharis valleculosa (EV). 16S rRNA gene and particulate methane monooxygenase gene (pmoA) clone library sequence data indicated the presence of methanotrophs with two genera, Methylobacter and Methylocystis. Methylococcus, like pmoA gene sequences, were also retrieved and showed low similarity to those from Methylococcus spp. and thus indicates the existence of novel methanotrophs in the Zoige wetland. Quantitative polymerase chain reaction (qPCR) assays were used to measure the abundance of methantrophs and detected 107 to 108 of total pmoA gene copies per gram dry weight of soil in the three marshes. Group-specific qPCR and reverse transcriptase qPCR results found that the Methylobacter genus dominates the wetland, and Methylocystis methanotrophs were less abundant, although this group of methanotrophs was estimated to be more active according to mRNA/DNA ratio. Furthermore, EV marsh demonstrated the highest methanotrophs abundance and activity among the three marshes investigated. Our study suggests that both type I and type II methanotrophs contribute to the methane oxidation in the Zoige wetland.