Hongying Gan-Schreier
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hongying Gan-Schreier.
The Journal of Pediatrics | 2010
Hongying Gan-Schreier; Moustafa Kebbewar; Junmin Fang-Hoffmann; Julia Wilrich; Ghassan Abdoh; Tawfeg Ben-Omran; Noora Shahbek; Abdulbari Bener; Hilal Al Rifai; Abdul Latif Al Khal; Martin Lindner; Johannes Zschocke; Georg F. Hoffmann
OBJECTIVE To allow early recognition of cystathionine beta-synthase by newborn screening. STUDY DESIGN Total homocysteine was determined in dried blood spots with a novel, robust high-performance liquid chromatography method with tandem mass spectrometry. Quantification of homocysteine was linear over a working range up to 50 micromol/L. For mutation analysis, DNA was tested for 2 mutations common in Qatar. RESULTS Both methods proved to be suitable for high throughput processing. In 2 years, 7 infants with classic homocystinuria were identified of 12,603 native Qatari infants, yielding an incidence of 1:1800. Molecular screening would have missed 1 patient homozygous for a mutation not previously identified in the Qatari population. Over a period of 3 years, a total of 14 cases of classic homocystinuria were detected by screening of homocysteine from all newborn infants born in Qatar (n = 46 406). Homocysteine was always elevated, whereas methionine was elevated in only 7 cases. CONCLUSIONS The study offers a reliable method for newborn screening for cystathionine beta-synthase deficiency, reaching a sensitivity of up to 100%, even if samples are taken within the first 3 days of life.
Human Mutation | 2009
Johannes Zschocke; Moustafa Kebbewar; Hongying Gan-Schreier; Christine Fischer; Junmin Fang-Hoffmann; Julia Wilrich; Ghassan Abdoh; Tawfeg Ben-Omran; Noora Shahbek; Martin Lindner; Hilal Al Rifai; Abdul Latif Al Khal; Georg F. Hoffmann
We report the results of molecular neonatal screening for homocystinuria (cystathionine beta‐synthase deficiency) in neonates of Qatari origin, developed in conjunction with a novel biochemical screening approach. DNA was extracted from dried blood spots (DBS); the prevalent Qatari CBS gene mutation p.R336C (c.1006C>T) and a second mutation were tested with specific TaqMan assays. Over a period of 2 years we screened 12,603 neonates and identified six affected neonates homozygous for p.R336C. There were 225 heterozygous carriers for p.R336C. One additional child with homocystinuria detected through biochemical screening was homozygous for a mutation not previously identified in Qatar. Homocystinuria in the Qatari population has an incidence of 1:1,800, the highest in the world and even higher than previously estimated. Allele frequency of the mutation p.R336C is approximately 1%, displaying a significant deviation from Hardy Weinberg equilibrium. In conclusion, first‐line molecular neonatal screening is technically feasible and may be developed as an option for presymptomatic identification of genetic disorders caused by specific mutations or a limited number of prevalent mutations. However, sensitivity for the diagnosis of disorders caused by various mutations is limited even in a homogeneous population such as Qatar. Hum Mutat 30:1–2, 2009.
World Journal of Gastroenterology | 2012
Dorothea Haas; Hongying Gan-Schreier; Claus Dieter Langhans; Tilman Rohrer; Guido Engelmann; Maura Heverin; David W. Russell; Peter Clayton; Georg F. Hoffmann; Jürgen G. Okun
AIM To investigate the clinical presentations associated with bile acid synthesis defects and to describe identification of individual disorders and diagnostic pitfalls. METHODS Authors describe semiquantitative determination of 16 urinary bile acid metabolites by electrospray ionization-tandem mass spectrometry. Sample preparation was performed by solid-phase extraction. The total analysis time was 2 min per sample. Authors determined bile acid metabolites in 363 patients with suspected defects in bile acid metabolism. RESULTS Abnormal bile acid metabolites were found in 36 patients. Two patients had bile acid synthesis defects but presented with atypical presentations. In 2 other patients who were later shown to be affected by biliary atresia and cystic fibrosis the profile of bile acid metabolites was initially suggestive of a bile acid synthesis defect. Three adult patients suffered from cerebrotendinous xanthomatosis. Nineteen patients had peroxisomal disorders, and 10 patients had cholestatic hepatopathy of other cause. CONCLUSION Screening for urinary cholanoids should be done in every infant with cholestatic hepatopathy as well as in children with progressive neurological disease to provide specific therapy.
Molecular Pharmacology | 2013
Walee Chamulitrat; Gerhard Liebisch; Weihong Xu; Hongying Gan-Schreier; Anita Pathil; Gerd Schmitz; W Stremmel
Ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE) is a hepatoprotectant in inhibiting apoptosis, inflammation, and hyperlipidemia in mouse models of nonalcoholic steatohepatitis (NASH). We studied the ability of UDCA-LPE to inhibit palmitate (Pal)-induced apoptosis in primary hepatocytes and delineate cytoprotective mechanisms. We showed that lipoprotection by UDCA-LPE was mediated by cAMP and was associated with increases in triglycerides (TGs) and phospholipids (PLs). An inhibitor of cAMP-effector protein kinase A partially reversed the protective effects of UDCA-LPE. Lipidomic analyses of fatty acids and PL composition revealed a shift of lipid metabolism from saturated Pal to monounsaturated and polyunsaturated fatty acids, mainly, oleate, docosapentaenoate, and docosahexaenoate. The latter two ω-3 fatty acids were particularly found in phosphatidylcholine and phosphatidylserine pools. The catalysis of Pal by stearoyl-CoA desaturase-1 (SCD-1) is a known mechanism for the channeling of Pal away from apoptosis. SCD-1 protein was upregulated during UDCA-LPE lipoprotection. SCD-1 knockdown of Pal-treated cells showed further increased apoptosis, and the extent of UDCA-LPE protection was reduced. Thus, the major mechanism of UDCA-LPE lipoprotection involved a metabolic shift from toxic saturated toward cytoprotective unsaturated fatty acids in part via SCD-1. UDCA-LPE may thus be a therapeutic agent for treatment of NASH by altering distinct pools of fatty acids for storage into TGs and PLs, and the latter may protect lipotoxicity at the membrane levels.
Biochimica et Biophysica Acta | 2015
Li Jiao; Hongying Gan-Schreier; Sabine Tuma-Kellner; W Stremmel; Walee Chamulitrat
Chronic bowel disease can co-exist with severe autoimmune hepatitis (AIH) in an absence of primary sclerosing cholangitis. Genetic background may contribute to this overlap syndrome. We previously have shown that the deficiency of iPLA2β causes an accumulation of hepatocyte apoptosis, and renders susceptibility for acute liver injury. We here tested whether AIH induction in iPLA2β-null mice could result in intestinal injury, and whether bile acid metabolism was altered. Control wild-type (WT) and female iPLA2β-null (iPLA2β(-/-)) mice were intravenously injected with 10mg/kg concanavalinA (ConA) or saline for 24h. ConA treatment of iPLA2β(-/-) mice caused massive liver injury with increased liver enzymes, fibrosis, and necrosis. While not affecting WT mice, ConA treatment of iPLA2β(-/-) mice caused severe duodenal villous atrophy concomitant with increased apoptosis, cell proliferation, globlet cell hyperplasia, and endotoxin leakage into portal vein indicating a disruption of intestinal barrier. With the greater extent than in WT mice, ConA treatment of iPLA2β(-/-) mice increased jejunal expression of innate response cytokines CD14, TNF-α, IL-6, and SOCS3 as well as chemokines CCL2 and the CCL3 receptor CCR5. iPLA2β deficiency in response to ConA-induced AIH caused a significant decrease in hepatic and biliary bile acids, and this was associated with suppression of hepatic Cyp7A1, Ntcp and ABCB11/Bsep and upregulation of intestinal FXR/FGF15 mRNA expression. The suppression of hepatic Ntcp expression together with the loss of intestinal barrier could account for the observed bile acid leakage into peripheral blood. Thus, enteropathy may result from acute AIH in a susceptible host such as iPLA2β deficiency.
Biochimica et Biophysica Acta | 2016
Wolfgang Stremmel; Simone Staffer; Hongying Gan-Schreier; Andreas Wannhoff; Margund Bach; Annika Gauss
Phosphatidylcholine (PC) is the most abundant phospholipid in intestinal mucus, indicative of a specific transport system across the mucosal epithelium to the intestinal lumen. To elucidate this transport mechanism, we employed a transwell tissue culture system with polarized CaCo2 cells. It was shown that PC could not substantially be internalized by the cells. However, after basal application of increasing PC concentrations, an apical transport of 47.1±6.3nmolh(-1)mMPC(-1) was observed. Equilibrium distribution studies with PC applied in equal concentrations to the basal and apical compartments showed a 1.5-fold accumulation on the expense of basal PC. Disruption of tight junctions (TJ) by acetaldehyde or PPARγ inhibitors or by treatment with siRNA to TJ proteins suppressed paracellular transport by at least 50%. Transport was specific for the choline containing the phospholipids PC, lysoPC and sphingomyelin. We showed that translocation is driven by an electrochemical gradient generated by apical accumulation of Cl(-) and HCO3(-) through CFTR. Pretreatment with siRNA to mucin 3 which anchors in the apical plasma membrane of mucosal cells inhibited the final step of luminal PC secretion. PC accumulates in intestinal mucus using a paracellular, apically directed transport route across TJs.
Toxicology Letters | 2017
Alejandro Carazo; Jan Dusek; Hana Chodounska; Alzbeta Horvatova; Karel Berka; Václav Bazgier; Hongying Gan-Schreier; Walee Chamulitrat; Eva Kudova; Petr Pavek
The Pregnane X (PXR), Vitamin D (VDR) and Farnesoid X (FXR) nuclear receptors have been shown to be receptors of bile acids controlling their detoxification or synthesis. Chenodeoxycholic (CDCA) and lithocholic (LCA) acids are ligands of FXR and VDR, respectively, whereas 3-keto and acetylated derivates of LCA have been described as ligands for all three receptors. In this study, we hypothesized that oxidation or acetylation at position 3, 7 and 12 of bile acids DCA (deoxycholic acid), LCA, CA (cholic acid), and CDCA by detoxification enzymes or microbiome may have an effect on the interactions with bile acid nuclear receptors. We employed reporter gene assays in HepG2 cells, the TR-FRET assay with recombinant PXR and RT-PCR to study the effects of acetylated and keto bile acids on the nuclear receptors activation and their target gene expression in differentiated hepatic HepaRG cells. We demonstrate that the DCA 3,12-diacetate and CA 3,7,12-triacetate derivatives are ligands of PXR and DCA 3,12-diacetate induces PXR target genes such as CYP3A4, CYP2B6 and ABCB1/MDR1. In conclusion, we found that acetylated DCA and CA are potent ligands of PXR. Whether the acetylated bile acid derivatives are novel endogenous ligands of PXR with detoxification or physiological functions should be further studied in ongoing experiments.
Journal of Crohns & Colitis | 2017
Wolfgang Stremmel; Simone Staffer; Mathias Schneider; Hongying Gan-Schreier; Andreas Wannhoff; Nicole Stuhrmann; Annika Gauss; Hartwig Wolburg; Anne Mahringer; Alexander Swidsinski; Thomas Efferth
Abstract Background and Aims A key pathogenetic feature of ulcerative colitis [UC] is an intrinsic low mucus phosphatidylcholine[PC] content. Recently, a paracellular transport for PC across tight junctions[TJs] was described, suggesting TJ disturbance as a cause of diminished luminal PC transport. Therefore, we aimed to generate mutant mice with TJ deletion to evaluate whether a UC phenotype developed. Methods CL57BL/6 control wild-type mice were compared to mutant mice with tamoxifen-induced villin-Cre-dependent intestinal deletion of kindlin 1 and 2. Results Electron microscopy of mucosal biopsies obtained from both mutants before overt inflammation following only 2 days of tamoxifen exposure revealed a defective TJ morphology with extended paracellular space and, by light microscopy, expanded mucosal crypt lumina. PC secretion into mucus was reduced by >65% and the mucus PC content dropped by >50%, causing a >50 % decrease of mucus hydrophobicity in both mutants. Consequently, the microbiota was able to penetrate the submucosa. After 3 days of tamoxifen exposure, intestinal inflammation was present in both mutants, with loose bloody stools as well as macroscopic and histological features of colitis. Oral PC supplementation was able to suppress inflammation. By analogy, colonic biopsies obtained from patients with UC in remission also showed a defective epithelium with widened intercellular clefts, and enlarged crypt luminal diameters with functionally impaired luminal PC secretion. Conclusions Genetic mouse models with intestinal deletion of kindlin 1 and 2 resulted in TJ deletion and revealed pathophysiological features of impaired PC secretion to the mucus leading to mucosal inflammation compatible with human UC.
Shock | 2017
Tanyarath Utaipan; Ann-Christin Otto; Hongying Gan-Schreier; Warangkana Chunglok; Anita Pathil; Wolfgang Stremmel; Walee Chamulitrat
ABSTRACT Increased activation of CD95/Fas by Fas ligand in viral hepatitis and autoimmunity is involved in pathogenesis of fulminant hepatitis and liver failure. We designed a bile-acid phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE with LPE containing oleate at the sn-1) as a hepatoprotectant that was shown to protect against fulminant hepatitis induced by endotoxin. We herein further assessed the ability of UDCA-LPE to prevent death receptor CD95/Fas-induced fulminant hepatitis. C57BL/6 mice were intravenously administered with CD95/Fas agonistic monoclonal antibody (Jo-2) with or without 1 h pretreatment with 50 mg/kg UDCA-LPE. Jo-2 administration caused massive hepatocyte damage as seen by histology, and this was associated with a significant decrease in hepatic phosphatidylcholine (PC), lysoPC, and lysophosphatidylethanolamine levels. By histology, UDCA-LPE pretreatment improved hepatocyte damage and restored the loss of these phospholipids in part by a mechanism involving an inhibition of cytosolic phospholipaseA2 expression. Accordingly, Jo-2 treatment increased hepatic expression of cleaved caspase 8, caspase 3, and poly (ADP-Ribose) polymerase-1, and on the other hand decreased that of anti-apoptotic cellular FLICE-inhibitory protein. UDCA-LPE pretreatment was able to reverse all these changes. Moreover, UDCA-LPE attenuated inflammatory response by lowering the levels of Jo-2-induced proinflammatory cytokines TNF-&agr;, IL-6, and IL-1&bgr; in liver and serum. UDCA-LPE was also able to decrease the levels of stimulated Th1/Th17 cytokines in Jo-2-primed isolated splenocytes. Taken together, UDCA-LPE exhibited potent anti-inflammatory effects against CD95/Fas-induced fulminant hepatitis.
Biochimica et Biophysica Acta | 2017
Li Jiao; Hongying Gan-Schreier; Xingya Zhu; Wang Wei; Sabine Tuma-Kellner; Gerhard Liebisch; W Stremmel; Walee Chamulitrat
Ageing is a major risk factor for various forms of liver and gastrointestinal (GI) disease and genetic background may contribute to the pathogenesis of these diseases. Group VIA phospholipase A2 or iPLA2β is a homeostatic PLA2 by playing a role in phospholipid metabolism and remodeling. Global iPLA2β-/- mice exhibit aged-dependent phenotypes with body weight loss and abnormalities in the bone and brain. We have previously reported the abnormalities in these mutant mice showing susceptibility for chemical-induced liver injury and colitis. We hypothesize that iPLA2β deficiency may sensitize with ageing for an induction of GI injury. Male wild-type and iPLA2β-/- mice at 4 and 20-22months of age were studied. Aged, but not young, iPLA2β-/-mice showed increased hepatic fibrosis and biliary ductular expansion as well as severe intestinal atrophy associated with increased apoptosis, pro-inflammation, disrupted tight junction, and reduced number of mucin-containing globlet cells. This damage was associated with decreased expression of intestinal endoplasmic stress XBP1 and its regulator HNF1α, FATP4, ACSL5, bile-acid transport genes as well as nuclear receptors LXRα and FXR. By LC/MS-MS profiling, iPLA2β deficiency in aged mice caused an increase of intestinal arachidonate-containing phospholipids concomitant with a decrease in ceramides. By the suppression of intestinal FXR/FGF-15 signaling, hepatic bile-acid synthesis gene expression was increased leading to an elevation of secondary and hydrophobic bile acids in liver, bile, and intestine. In conclusions, ageing sensitized by iPLA2β deficiency caused a decline of key intestinal homeostatic genes resulting in the development of GI disease in a gut-to-liver manner.