Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongying Zhu is active.

Publication


Featured researches published by Hongying Zhu.


Analytical Chemistry | 2011

Optofluidic Fluorescent Imaging Cytometry on a Cell Phone

Hongying Zhu; Sam Mavandadi; Ahmet F. Coskun; Oguzhan Yaglidere; Aydogan Ozcan

Fluorescent microscopy and flow cytometry are widely used tools in biomedical sciences. Cost-effective translation of these technologies to remote and resource-limited environments could create new opportunities especially for telemedicine applications. Toward this direction, here we demonstrate the integration of imaging cytometry and fluorescent microscopy on a cell phone using a compact, lightweight, and cost-effective optofluidic attachment. In this cell-phone-based optofluidic imaging cytometry platform, fluorescently labeled particles or cells of interest are continuously delivered to our imaging volume through a disposable microfluidic channel that is positioned above the existing camera unit of the cell phone. The same microfluidic device also acts as a multilayered optofluidic waveguide and efficiently guides our excitation light, which is butt-coupled from the side facets of our microfluidic channel using inexpensive light-emitting diodes. Since the excitation of the sample volume occurs through guided waves that propagate perpendicular to the detection path, our cell-phone camera can record fluorescent movies of the specimens as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the target solution of interest. We tested the performance of our cell-phone-based imaging cytometer by measuring the density of white blood cells in human blood samples, which provided a decent match to a commercially available hematology analyzer. We further characterized the imaging quality of the same platform to demonstrate a spatial resolution of ~2 μm. This cell-phone-enabled optofluidic imaging flow cytometer could especially be useful for rapid and sensitive imaging of bodily fluids for conducting various cell counts (e.g., toward monitoring of HIV+ patients) or rare cell analysis as well as for screening of water quality in remote and resource-poor settings.


Lab on a Chip | 2013

Cost-effective and rapid blood analysis on a cell-phone

Hongying Zhu; Ikbal Sencan; Justin Wong; Stoyan Dimitrov; Derek Tseng; Keita Nagashima; Aydogan Ozcan

We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings.


Optics Express | 2010

Holographic opto-fluidic microscopy

Waheb Bishara; Hongying Zhu; Aydogan Ozcan

Over the last decade microfluidics has created a versatile platform that has significantly advanced the ways in which micro-scale organisms and objects are controlled, processed and investigated, by improving the cost, compactness and throughput aspects of analysis. Microfluidics has also expanded into optics to create reconfigurable and flexible optical devices such as reconfigurable lenses, lasers, waveguides, switches, and on-chip microscopes. Here we present a new opto-fluidic microscopy modality, i.e., Holographic Opto-fluidic Microscopy (HOM), based on lensless holographic imaging. This imaging modality complements the miniaturization provided by microfluidics and would allow the integration of microscopy into existing on-chip microfluidic devices with various functionalities. Our imaging modality utilizes partially coherent in-line holography and pixel super-resolution to create high-resolution amplitude and phase images of the objects flowing within micro-fluidic channels, which we demonstrate by imaging C. elegans, Giardia lamblia, and Mulberry pollen. HOM does not involve complicated fabrication processes or precise alignment, nor does it require a highly uniform flow of objects within microfluidic channels.


Applied Physics Letters | 2011

Optofluidic Tomography on a Chip

Serhan O. Isikman; Waheb Bishara; Hongying Zhu; Aydogan Ozcan

Using lensfree holography we demonstrate optofluidic tomography on a chip. A partially coherent light source is utilized to illuminate the objects flowing within a microfluidic channel placed directly on a digital sensor array. The light source is rotated to record lensfree holograms of the objects at different viewing directions. By capturing multiple frames at each illumination angle, pixel super-resolution techniques are utilized to reconstruct high-resolution transmission images at each angle. Tomograms of flowing objects are then computed through filtered back-projection of these reconstructed lensfree images, thereby enabling optical sectioning on-a-chip. The proof-of-concept is demonstrated by lensfree tomographic imaging of C. elegans.


PLOS ONE | 2015

Calling biomarkers in milk using a protein microarray on your smartphone

Susann Katrina Julie Ludwig; Christian Tokarski; Stefan N. Lang; Leendert A. van Ginkel; Hongying Zhu; Aydogan Ozcan; Michel W. F. Nielen

Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD) depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST) in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1). Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this ‘protein microarray on a smartphone’-concept for on-site testing, e.g., in food safety, environment and health monitoring.


Journal of Visualized Experiments | 2013

Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

Hongying Zhu; Aydogan Ozcan

Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.


Methods of Molecular Biology | 2015

Opto-Fluidics Based Microscopy and Flow Cytometry on a Cell Phone for Blood Analysis

Hongying Zhu; Aydogan Ozcan

Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform by measuring the density of red and white blood cells as well as hemoglobin concentration in human blood samples, which showed a good match to our measurement results obtained using a commercially available hematology analyzer. Such a cell-phone enabled opto-fluidics microscopy, flow cytometry, and blood analysis platform could be especially useful for various telemedicine applications in remote and resource-limited settings.


international conference of the ieee engineering in medicine and biology society | 2011

Wide-field fluorescent microscopy on a cell-phone

Hongying Zhu; Oguzhan Yaglidere; Ting-Wei Su; Derek Tseng; Aydogan Ozcan

We demonstrate wide-field fluorescent imaging on a cell-phone, using compact and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. Battery powered light-emitting diodes (LEDs) are used to side-pump the sample of interest using butt-coupling. The pump light is guided within the sample cuvette to excite the specimen uniformly. The fluorescent emission from the sample is then imaged with an additional lens that is put in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to the detection path, an inexpensive plastic color filter is sufficient to create the dark-field background needed for fluorescent imaging. The imaging performance of this light-weight platform (∼28 grams) is characterized with red and green fluorescent microbeads, achieving an imaging field-of-view of ∼81 mm2 and a spatial resolution of ∼10 μm, which is enhanced through digital processing of the captured cell-phone images using compressive sampling based sparse signal recovery. We demonstrate the performance of this cell-phone fluorescent microscope by imaging labeled white-blood cells separated from whole blood samples as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts.


conference on lasers and electro optics | 2012

Fluorescent flow-cytometry on a cell-phone

Hongying Zhu; Sam Mavandadi; Ahmet F. Coskun; Oguzhan Yaglidere; Aydogan Ozcan

We demonstrate fluorescent imaging flow-cytometry that is integrated on a cell-phone. The cellphone based flow-cytometer was used to measure the density of white-blood-cells in blood samples, providing a decent match to the hematology analyzer.


international conference of the ieee engineering in medicine and biology society | 2011

Optofluidic on-chip tomography

Serhan O. Isikman; Waheb Bishara; Hongying Zhu; Aydogan Ozcan

The first demonstration of optofluidic tomography is presented. Using partially coherent illumination, holograms of objects are recorded at multiple viewing angles, as they flow through a microfluidic channel placed directly on the top of an opto-electronic sensor array. These lensfree holograms are then digitally processed to compute pixel super-resolved tomograms of micro-objects to achieve sectional opto-fluidic imaging on a chip.

Collaboration


Dive into the Hongying Zhu's collaboration.

Top Co-Authors

Avatar

Aydogan Ozcan

University of California

View shared research outputs
Top Co-Authors

Avatar

Derek Tseng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Waheb Bishara

University of California

View shared research outputs
Top Co-Authors

Avatar

Ting-Wei Su

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alon Greenbaum

University of California

View shared research outputs
Top Co-Authors

Avatar

Ikbal Sencan

University of California

View shared research outputs
Top Co-Authors

Avatar

Onur Mudanyali

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge