Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongyue Dai is active.

Publication


Featured researches published by Hongyue Dai.


Nature | 2002

Gene expression profiling predicts clinical outcome of breast cancer.

Laura J. van 't Veer; Hongyue Dai; Marc J. van de Vijver; Yudong D. He; Augustinus A. M. Hart; Mao Mao; Hans Peterse; Karin van der Kooy; Matthew J. Marton; Anke Witteveen; George J. Schreiber; Ron M. Kerkhoven; Christopher J. Roberts; Peter S. Linsley; René Bernards; Stephen H. Friend

Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70–80% of patients receiving this treatment would have survived without it. None of the signatures of breast cancer gene expression reported to date allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases (‘poor prognosis’ signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.


Nature Biotechnology | 2001

Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer

Timothy Hughes; Mao Mao; Allan R. Jones; Julja Burchard; Matthew J. Marton; Karen W. Shannon; Steven M. Lefkowitz; Michael Ziman; Janell M. Schelter; Michael R. Meyer; Sumire V. Kobayashi; Colleen P. Davis; Hongyue Dai; Yudong D. He; Guy Cavet; Wynn L. Walker; Anne E. West; Ernest M. Coffey; Daniel D. Shoemaker; Roland Stoughton; Alan P. Blanchard; Stephen H. Friend; Peter S. Linsley

We describe a flexible system for gene expression profiling using arrays of tens of thousands of oligonucleotides synthesized in situ by an ink-jet printing method employing standard phosphoramidite chemistry. We have characterized the dependence of hybridization specificity and sensitivity on parameters including oligonucleotide length, hybridization stringency, sequence identity, sample abundance, and sample preparation method. We find that 60-mer oligonucleotides reliably detect transcript ratios at one copy per cell in complex biological samples, and that ink-jet arrays are compatible with several different sample amplification and labeling techniques. Furthermore, results using only a single carefully selected oligonucleotide per gene correlate closely with those obtained using complementary DNA (cDNA) arrays. Most of the genes for which measurements differ are members of gene families that can only be distinguished by oligonucleotides. Because different oligonucleotide sequences can be specified for each array, we anticipate that ink-jet oligonucleotide array technology will be useful in a wide variety of DNA microarray applications.


Molecular & Cellular Proteomics | 2004

Integrated Genomic and Proteomic Analyses of Gene Expression in Mammalian Cells

Qiang Tian; Serguei B. Stepaniants; Mao Mao; Lee Weng; Megan C. Feetham; Michelle J. Doyle; Eugene C. Yi; Hongyue Dai; Vesteinn Thorsson; Jimmy K. Eng; David R. Goodlett; Joel P. Berger; Bert Gunter; Peter S. Linseley; Roland Stoughton; Ruedi Aebersold; Steven J. Collins; William A. Hanlon; Leroy Hood

Using DNA microarrays together with quantitative proteomic techniques (ICAT reagents, two-dimensional DIGE, and MS), we evaluated the correlation of mRNA and protein levels in two hematopoietic cell lines representing distinct stages of myeloid differentiation, as well as in the livers of mice treated for different periods of time with three different peroxisome proliferative activated receptor agonists. We observe that the differential expression of mRNA (up or down) can capture at most 40% of the variation of protein expression. Although the overall pattern of protein expression is similar to that of mRNA expression, the incongruent expression between mRNAs and proteins emphasize the importance of posttranscriptional regulatory mechanisms in cellular development or perturbation that can be unveiled only through integrated analyses of both proteins and mRNAs.


Nature | 2001

Experimental annotation of the human genome using microarray technology.

Daniel D. Shoemaker; Eric E. Schadt; Christopher D. Armour; Yudong He; Philip W. Garrett-engele; P. D. McDonagh; Patrick M. Loerch; Amy Leonardson; Pek Yee Lum; Guy Cavet; Lani F. Wu; Steven J. Altschuler; Seve Edwards; J. King; John S. Tsang; G. Schimmack; J. M. Schelter; J. Koch; M. Ziman; Matthew J. Marton; B. Li; P. Cundiff; T. Ward; John Castle; M. Krolewski; Michael R. Meyer; Mao Mao; Julja Burchard; M. J. Kidd; Hongyue Dai

The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using ‘exon’ and ‘tiling’ arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.


Nature Genetics | 2012

Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma

Wing-Kin Sung; Hancheng Zheng; Shuyu Li; Ronghua Chen; Xiao Liu; Yingrui Li; Nikki P. Lee; Wah H Lee; Pramila Ariyaratne; Fabianus Hendriyan Mulawadi; Kwong F. Wong; Angela M. Liu; Ronnie Tung-Ping Poon; Sheung Tat Fan; Kwong Leung Chan; Zhuolin Gong; Yujie Hu; Zhao Lin; Guan Wang; Qinghui Zhang; Thomas D. Barber; Wen-Chi Chou; Amit Aggarwal; Ke Hao; Wei Zhou; Chunsheng Zhang; James C. Hardwick; Carolyn A. Buser; Jiangchun Xu; Zhengyan Kan

To survey hepatitis B virus (HBV) integration in liver cancer genomes, we conducted massively parallel sequencing of 81 HBV-positive and 7 HBV-negative hepatocellular carcinomas (HCCs) and adjacent normal tissues. We found that HBV integration is observed more frequently in the tumors (86.4%) than in adjacent liver tissues (30.7%). Copy-number variations (CNVs) were significantly increased at HBV breakpoint locations where chromosomal instability was likely induced. Approximately 40% of HBV breakpoints within the HBV genome were located within a 1,800-bp region where the viral enhancer, X gene and core gene are located. We also identified recurrent HBV integration events (in ≥4 HCCs) that were validated by RNA sequencing (RNA-seq) and Sanger sequencing at the known and putative cancer-related TERT, MLL4 and CCNE1 genes, which showed upregulated gene expression in tumor versus normal tissue. We also report evidence that suggests that the number of HBV integrations is associated with patient survival.


Cancer Research | 2005

A Cell Proliferation Signature Is a Marker of Extremely Poor Outcome in a Subpopulation of Breast Cancer Patients

Hongyue Dai; Laura J. van 't Veer; John Lamb; Yudong D. He; Mao Mao; Bernard Fine; René Bernards; Marc J. van de Vijver; Paul J. Deutsch; Alan B. Sachs; Roland Stoughton; Stephen H. Friend

Breast cancer comprises a group of distinct subtypes that despite having similar histologic appearances, have very different metastatic potentials. Being able to identify the biological driving force, even for a subset of patients, is crucially important given the large population of women diagnosed with breast cancer. Here, we show that within a subset of patients characterized by relatively high estrogen receptor expression for their age, the occurrence of metastases is strongly predicted by a homogeneous gene expression pattern almost entirely consisting of cell cycle genes (5-year odds ratio of metastasis, 24.0; 95% confidence interval, 6.0-95.5). Overexpression of this set of genes is clearly associated with an extremely poor outcome, with the 10-year metastasis-free probability being only 24% for the poor group, compared with 85% for the good group. In contrast, this gene expression pattern is much less correlated with the outcome in other patient subpopulations. The methods described here also illustrate the value of combining clinical variables, biological insight, and machine-learning to dissect biological complexity. Our work presented here may contribute a crucial step towards rational design of personalized treatment.


Genome Research | 2013

Whole genome sequencing identifies recurrent mutations in hepatocellular carcinoma

Zhengyan Kan; Hancheng Zheng; Xiao Liu; Shuyu Li; Thomas D. Barber; Zhuolin Gong; Huan Gao; Ke Hao; Melinda D. Willard; Jiangchun Xu; Robert Hauptschein; Paul A. Rejto; Julio Fernandez; Guan Wang; Qinghui Zhang; Bo Wang; Ronghua Chen; Jian Wang; Nikki P. Lee; Wei Zhou; Zhao Lin; Zhiyu Peng; Kang Yi; Shengpei Chen; Lin Li; Xiaomei Fan; Jie Yang; Rui Ye; Jia Ju; Kai Wang

Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 (JAK1), in 9.1% of patients and provides a path toward therapeutic intervention of the disease.


BMC Medical Genomics | 2011

EMT is the dominant program in human colon cancer

Andre Loboda; Michael Nebozhyn; James Watters; Carolyne A Buser; Peter M. Shaw; Pearl S. Huang; Laura J. van 't Veer; Rob A. E. M. Tollenaar; David B Jackson; Deepak Agrawal; Hongyue Dai; Timothy J. Yeatman

BackgroundColon cancer has been classically described by clinicopathologic features that permit the prediction of outcome only after surgical resection and staging.MethodsWe performed an unsupervised analysis of microarray data from 326 colon cancers to identify the first principal component (PC1) of the most variable set of genes. PC1 deciphered two primary, intrinsic molecular subtypes of colon cancer that predicted disease progression and recurrence.ResultsHere we report that the most dominant pattern of intrinsic gene expression in colon cancer (PC1) was tightly correlated (Pearson R = 0.92, P < 10-135) with the EMT signature-- both in gene identity and directionality. In a global micro-RNA screen, we further identified the most anti-correlated microRNA with PC1 as MiR200, known to regulate EMT.ConclusionsThese data demonstrate that the biology underpinning the native, molecular classification of human colon cancer--previously thought to be highly heterogeneous-- was clarified through the lens of comprehensive transcriptome analysis.


Molecular Systems Biology | 2010

microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma

Julja Burchard; Chunsheng Zhang; Angela M. Liu; Ronnie Tung-Ping Poon; Nikki P. Lee; Kwong-Fai Wong; Pak Sham; Brian Yee Hong Lam; Mark Ferguson; George Tokiwa; Ryan Smith; Brendan Leeson; Rebecca Beard; John Lamb; Lee Lim; Mao Mao; Hongyue Dai; John M. Luk

Tumorigenesis involves multistep genetic alterations. To elucidate the microRNA (miRNA)–gene interaction network in carcinogenesis, we examined their genome‐wide expression profiles in 96 pairs of tumor/non‐tumor tissues from hepatocellular carcinoma (HCC). Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR‐122 is under‐expressed in HCC and that increased expression of miR‐122 seed‐matched genes leads to a loss of mitochondrial metabolic function. Furthermore, the miR‐122 secondary targets, which decrease in expression, are good prognostic markers for HCC. Transcriptome profiling data from additional 180 HCC and 40 liver cirrhotic patients in the same cohort were used to confirm the anti‐correlation of miR‐122 primary and secondary target gene sets. The HCC findings can be recapitulated in mouse liver by silencing miR‐122 with antagomir treatment followed by gene‐expression microarray analysis. In vitro miR‐122 data further provided a direct link between induction of miR‐122‐controlled genes and impairment of mitochondrial metabolism. In conclusion, miR‐122 regulates mitochondrial metabolism and its loss may be detrimental to sustaining critical liver function and contribute to morbidity and mortality of liver cancer patients.


Journal of Biological Chemistry | 2011

DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival

John M. Luk; Julja Burchard; Chunsheng Zhang; Angela M. Liu; Kwong F. Wong; Felix H. Shek; Nikki P. Lee; Sheung Tat Fan; Ronnie Tung-Ping Poon; Irena Ivanovska; Ulrike Philippar; Michele A. Cleary; Carolyn A. Buser; Peter M. Shaw; Chuen-Neng Lee; Daniel G. Tenen; Hongyue Dai; Mao Mao

Hepatocellular carcinoma (HCC) is a heterogeneous and highly aggressive malignancy, for which there are no effective cures. Identification of a malignant stemlike subtype of HCC may offer patients with a dismal prognosis a potential targeted therapy using c-MET and Wnt pathway inhibitors. MicroRNAs (miRNAs) show promise as diagnostic and prognostic tools for cancer detection and stratification. Using a TRE-c-Met-driven transgenic HCC mouse model, we identified a cluster of 23 miRNAs that is encoded within the Dlk1-Gtl2 imprinted region on chromosome 12qF1 overexpressed in all of the isolated liver tumors. Interestingly, this region is conserved among mammalian species and maps to the human DLK1-DIO3 region on chromosome 14q32.2. We thus examined the expression of the DLK1-DIO3 miRNA cluster in a cohort of 97 hepatitis B virus-associated HCC patients and identified a subgroup (n = 18) of patients showing strong coordinate overexpression of miRNAs in this cluster but not in other cancer types (breast, lung, kidney, stomach, and colon) that were tested. Expression levels of imprinted gene transcripts from neighboring loci in this 14q32.2 region and from a subset of other imprinted sites were concomitantly elevated in human HCC. Interestingly, overexpression of the DLK1-DIO3 miRNA cluster was positively correlated with HCC stem cell markers (CD133, CD90, EpCAM, Nestin) and associated with a high level of serum α-fetoprotein, a conventional biomarker for liver cancer, and poor survival rate in HCC patients. In conclusion, our findings suggest that coordinate up-regulation of the DLK1-DIO3 miRNA cluster at 14q32.2 may define a novel molecular (stem cell-like) subtype of HCC associated with poor prognosis.

Collaboration


Dive into the Hongyue Dai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Nebozhyn

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Nikki P. Lee

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric E. Schadt

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge