Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Honnappa Jayakumar is active.

Publication


Featured researches published by Honnappa Jayakumar.


Bioorganic & Medicinal Chemistry | 2002

Synthesis and SAR of N-benzoyl-L-biphenylalanine derivatives : Discovery of TR-14035, a dual α4β7/α4β1 integrin antagonist

Ila Sircar; Kristjan S. Gudmundsson; Richard L. Martin; Jimmy Liang; Sumihiro Nomura; Honnappa Jayakumar; Bradley Teegarden; Dawn M. Nowlin; Pina M. Cardarelli; Jason R Mah; Samuel Connell; Ronald Griffith; Elias Lazarides

alpha(4)beta(1) and alpha(4)beta(7) integrins are key regulators of physiologic and pathologic responses in inflammation and autoimmune disease. The effectiveness of anti-integrin antibodies to attenuate a number of inflammatory/immune conditions provides a strong rationale to target integrins for drug development. Important advances have been made in identifying potent and selective candidates, peptides and peptidomimetics, for further development. Herein, we report the discovery of a series of novel N-benzoyl-L-biphenylalanine derivatives that are potent inhibitors of alpha4 integrins. The potency of the initial lead compound (1: IC(50) alpha(4)beta(7)/alpha(4)beta(1)=5/33 microM) was optimized via sequential manipulation of substituents to generate low nM, orally bioavailable dual alpha(4)beta(1)/alpha(4)beta(7) antagonists. The SAR also led to the identification of several subnanomolar antagonists (134, 142, and 143). Compound 81 (TR-14035; IC(50) alpha(4)beta(7)/alpha(4)beta(1)=7/87 nM) has completed Phase I studies in Europe. The synthesis, SAR and biological evaluation of these compounds are described.


Journal of Medicinal Chemistry | 2010

Discovery and Structure−Activity Relationship of 3-Methoxy-N-(3-(1-methyl-1H-pyrazol-5-yl)-4-(2-morpholinoethoxy)phenyl)benzamide (APD791): A Highly Selective 5-Hydroxytryptamine2A Receptor Inverse Agonist for the Treatment of Arterial Thrombosis

Yifeng Xiong; Bradley Teegarden; Jin-Sun Karoline Choi; Sonja Strah-Pleynet; Marc Decaire; Honnappa Jayakumar; Peter I. Dosa; Martin Casper; Lan Pham; Konrad Feichtinger; Brett Ullman; John Adams; Diane Yuskin; John Frazer; Michael Morgan; Abu Sadeque; Weichao Chen; Robert R. Webb; Daniel T. Connolly; Graeme Semple; Hussien A. Al-Shamma

Serotonin, which is stored in platelets and is released during thrombosis, activates platelets via the 5-HT(2A) receptor. 5-HT(2A) receptor inverse agonists thus represent a potential new class of antithrombotic agents. Our medicinal program began with known compounds that displayed binding affinity for the recombinant 5-HT(2A) receptor, but which had poor activity when tested in human plasma platelet inhibition assays. We herein describe a series of phenyl pyrazole inverse agonists optimized for selectivity, aqueous solubility, antiplatelet activity, low hERG activity, and good pharmacokinetic properties, resulting in the discovery of 10k (APD791). 10k inhibited serotonin-amplified human platelet aggregation with an IC(50) = 8.7 nM and had negligible binding affinity for the closely related 5-HT(2B) and 5-HT(2C) receptors. 10k was orally bioavailable in rats, dogs, and monkeys and had an acceptable safety profile. As a result, 10k was selected further evaluation and advanced into clinical development as a potential treatment for arterial thrombosis.


Bioorganic & Medicinal Chemistry Letters | 2009

Solubilized phenyl-pyrazole ureas as potent, selective 5-HT2A inverse-agonists and their application as antiplatelet agents

Peter I. Dosa; Sonja Strah-Pleynet; Honnappa Jayakumar; Martin Casper; Marc Decaire; Yifeng Xiong; Juerg Lehmann; Karoline Choi; Katie Elwell; Amy Siu-Ting Wong; Robert R. Webb; John W. Adams; Juan Ramirez; Jeremy G. Richman; William Thomsen; Graeme Semple; Bradley Teegarden

Potent 5-HT(2A) inverse-agonists containing phenyl-pyrazole ureas with an amino side chain were identified. Optimization of this series resulted in selective compounds that proved effective in modulating 5HT-induced amplification of ADP-stimulated human platelet aggregation.


Journal of Medicinal Chemistry | 2010

Discovery of 1-[3-(4-Bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxyphenyl]-3-(2,4-difluorophenyl)urea (Nelotanserin) and Related 5-Hydroxytryptamine2A Inverse Agonists for the Treatment of Insomnia

Bradley Teegarden; Hongmei Li; Honnappa Jayakumar; Sonja Strah-Pleynet; Peter I. Dosa; Susan D. Selaya; Naomi Kato; Katie Elwell; Jarrod Davidson; Karen Cheng; Hazel R. Saldana; John Frazer; Kevin Whelan; Jonathan Foster; Stephan Espitia; Robert R. Webb; Nigel R. A. Beeley; William Thomsen; Stephen R. Morairty; Thomas S. Kilduff; Hussien A. Al-Shamma

Insomnia affects a growing portion of the adult population in the U.S. Most current therapeutic approaches to insomnia primarily address sleep onset latency. Through the 5-hydroxytryptamine(2A) (5-HT(2A)) receptor, serotonin (5-HT) plays a role in the regulation of sleep architecture, and antagonists/inverse-agonists of 5-HT(2A) have been shown to enhance slow wave sleep (SWS). We describe here a series of 5-HT(2A) inverse-agonists that when dosed in rats, both consolidate the stages of NREM sleep, resulting in fewer awakenings, and increase a physiological measure of sleep intensity. These studies resulted in the discovery of 1-[3-(4-bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxyphenyl]-3-(2,4-difluorophenyl)urea (Nelotanserin), a potent inverse-agonist of 5-HT(2A) that was advanced into clinical trials for the treatment of insomnia.


Archive | 2003

Small molecule modulators of the 5-ht2a serotonin receptor useful for the prophylaxis and treatment of disorders related thereto

Bradley Teegarden; Keith Drouet; Honnappa Jayakumar; William Thomsen; Paul Maffuid; Katie Elwell; Richard Foster; Michael S. Lawless; Qian Liu; Julian R. Smith; Konrad Feichtinger; Robert C. Glen; Nigel R. A. Beelely


Archive | 2004

Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of disorders related thereto

Bradley Teegarden; Honnappa Jayakumar; Hongmei Li; Sonja Strah-Pleynet; Peter I. Dosa


Archive | 2005

3-phenyl-pyrazole derivatives as modulators of the 5-ht2a serotonin receptor useful for the treatment of disorders related thereto

Bradley Teegarden; Yifeng Xiong; Sonja Strah-Pleynet; Honnappa Jayakumar; Peter I. Dosa; Konrad Feichtinger; Martin Casper; Juerg Lehmann; Robert M. Jones; David J. Unett; Jin Sun Karoline Choi


Archive | 2003

Diarylamine and arylheteroarylamine pyrazole derivatives as modulators of 5ht2a

Bradley Teegarden; Sonja Strah-Pleynet; Honnappa Jayakumar


Archive | 2007

Primary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto

Bradley Teegarden; Dennis Chapman; Juyi Choi; Konrad Feichtinger; Sangdon Han; Honnappa Jayakumar; Thuy-Anh Tran; Jingdong Xu; Ning Zou


Archive | 2006

Diaryl and Arylheteroaryl Urea Derivatives as Modulators of 5-Ht2a Serotonin Receptor Useful for the Prophylaxis or Treatment of Progressive Multifocal Leukoencephalopathy

David J. Unett; Bradley Teegarden; Honnappa Jayakumar; Hongmei Li; Sonja Strah-Pleynet; Peter I. Dosa

Collaboration


Dive into the Honnappa Jayakumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Unett

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge