Hooi Ling Foo
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hooi Ling Foo.
Gut Pathogens | 2014
Nurhazirah Shazali; Hooi Ling Foo; Teck Chwen Loh; Di Wei Choe; Raha Abdul Rahim
BackgroundProbiotics are commonly used as feed additive to substitute antibiotic as growth promoter in animal farming. Probiotic consists of lactic acid bacteria (LAB), which enhance the growth and health of the animal. Probiotic also have higher possibility to become pathogenic bacteria that may carry antibiotic resistant gene that can be transmitted to other LAB species. The aim of this study was to identify the LAB species in the faeces of broiler chicken and to determine the prevalence of antibiotic resistant in LAB of broiler chicken.MethodsSixty faeces samples were collected from wet markets located in Klang Valley of Malaysia for the isolation of LAB using de-Mann Rogosa Sharpe medium. Thirteen species of LAB were obtained in this study and the identification of LAB was performed by using API test kit on the basis of carbohydrate fermentation profile. Antibiotic susceptibility assay was then carried out to determine the prevalence of LAB antibiotic resistance.ResultsLactococcus lactis subsp lactis was found in nine out of sixty faecal samples. Lactobacillus paracasei was the second common LAB species isolated from chicken faecal. No significant difference (P > 0.05) was found between the occurrence of Lactobacillus brevis, Lactobacillus curvatus, Lactobacillus plantarum, Leuconostoc lactis mesenteroides subsp mesenteroides/dectranium and Pediococcus pentosaceus isolated from 5 different locations. Most of the isolated LAB was resistant to antibiotic and high variability of the antibiotic resistance was observed among the LAB against 15 types of antibiotics. Penicillin, amoxicillin, chloramphenicol, and ampicillin had significant higher (P< 0.05) inhibitory zone than nalidixic acid, gentamycin, sulphamethoxazole, kanamycin, and streptomycin.ConclusionsMany species of LAB were isolated from the faecal samples of broiler chicken that resistance to the common antibiotics used in the farm. The development of resistant against antibiotics in LAB can be attributed to the long term exposure of antibiotic as growth promoter and therapeutic agents. Thus, it is essential to advise farmer the safety measure of antibiotic application in animal farming. Additionally, the supplementation of probiotic in animal feeding also needs more attention and close monitoring.
British Poultry Science | 2012
Di Wai Choe; Teck Chwen Loh; Hooi Ling Foo; M. Hair-Bejo; Q.S. Awis
1. Various dosages of metabolite combinations of the Lactobacillus plantarum RI11, RG14 and RG11 strains (COM456) were used to study the egg production, faecal microflora population, faecal pH, small intestine morphology, and plasma and egg yolk cholesterol in laying hens. 2. A total of 500 Lohmann Brown hens were raised from 19 weeks to 31 weeks of age. The birds were randomly divided into 5 groups and fed on various treatment diets: (i) basal diet without supplementation of metabolites (control); (ii) basal diet supplemented with 0·3% COM456 metabolites; (iii) basal diet supplemented with 0·6% COM456 metabolites; (iv) basal diet supplemented with 0·9% COM456 metabolites; and (v) basal diet supplemented with 1·2% COM456 metabolites. 3. The inclusion of 0·6% liquid metabolite combinations, produced from three L. plantarum strains, demonstrated the best effect in improving the hens’ egg production, faecal lactic acid bacteria population, and small intestine villus height, and reducing faecal pH and Enterobacteriaceae population, and plasma and yolk cholesterol concentrations. 4. The metabolites from locally isolated L. plantarum are a possible alternative feed additive in poultry production.
Animal Science Journal | 2010
Teck Chwen Loh; Nguyen Tien Thanh; Hooi Ling Foo; M. Hair-Bejo; Bin K. Azhar
The effects of feeding different dosages of metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456) on the performance of broiler chickens was studied. A total of 504 male Ross broilers were grouped into 7 treatments and offered different diets: (i) standard corn-soybean based diet (negative control); (ii) standard corn-soybean based diet +100 ppm neomycin and oxytetracycline (positive control); (iii) standard corn-soybean based diet + 0.1% metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456); (iv) standard corn-soybean based diet + 0.2% of Com3456; (v) standard corn-soybean based diet + 0.3% of Com3456 (vi) standard corn-soybean based diet + 0.4% of Com3456 and (vii) standard corn-soybean based diet + 0.5% of Com3456. Supplementation of Com3456 with different dosages improved growth performance, reduced Enterobacteriaceae and increased lactic acid bacteria count, and increased villi height of small intestine and fecal volatile fatty acid concentration. Treatment with 0.4% and 0.2% Com3456 had the best results, especially in terms of growth performance, feed conversion ratio and villi height among other dosages. However, the dosage of 0.2% was recommended due to its lower concentration yielding a similar effect as 0.4% supplementation. These results indicate that 0.2% is an optimum level to be included in the diets of broiler in order to replace antibiotic growth promoters.
BMC Biotechnology | 2014
Nooshin Rahnama; Hooi Ling Foo; Nor Aini Abdul Rahman; Arbakariya Ariff; Umi Kalsom Md Shah
BackgroundRice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels.ResultsRice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the hydrolytic reaction. According to the results of our study, FPase is a major component of cellulose hydrolytic enzyme complex system and the reducing sugar rate-limiting enzyme.ConclusionOur study revealed that rice straw hydrolysate served as a potential substrate for biobutanol production and FPase is a rate-limiting enzyme in saccharification.
Microbial Cell Factories | 2015
Tannaz Jalilsood; Ali Baradaran; Adelene Ai Lian Song; Hooi Ling Foo; Shuhaimi Mustafa; Wan Zuhainis Saad; Khatijah Yusoff; Raha Abdul Rahim
BackgroundBacterial biofilms are a preferred mode of growth for many types of microorganisms in their natural environments. The ability of pathogens to integrate within a biofilm is pivotal to their survival. The possibility of biofilm formation in Lactobacillus communities is also important in various industrial and medical settings. Lactobacilli can eliminate the colonization of different pathogenic microorganisms. Alternatively, new opportunities are now arising with the rapidly expanding potential of lactic acid bacteria biofilms as bio-control agents against food-borne pathogens.ResultsA new isolate Lactobacillus plantarum PA21 could form a strong biofilm in pure culture and in combination with several pathogenic and food-spoilage bacteria such as Salmonella enterica, Bacillus cereus, Pseudomonas fluorescens, and Aeromonas hydrophila. Exposure to Lb. plantarum PA21 significantly reduced the number of P. fluorescens,A. hydrophila and B. cereus cells in the biofilm over 2-, 4- and 6-day time periods. However, despite the reduction in S. enterica cells, this pathogen showed greater resistance in the presence of PA21 developed biofilm, either in the planktonic or biofilm phase. Lb. plantarum PA21 was also found to be able to constitutively express GFP when transformed with the expression vector pMG36e which harbors the gfp gene as a reporter demonstrating that the newly isolated strain can be used as host for genetic engineering.ConclusionIn this study, we evaluate the ability of a new Lactobacillus isolate to form strong biofilm, which would provide the inhibitory effect against several spoilage and pathogenic bacteria. This new isolate has the potential to serve as a safe and effective cell factory for recombinant proteins.
Journal of Applied Animal Research | 2008
Teck Chwen Loh; T.M. Lee; Hooi Ling Foo; F.L. Law; Mohamed Ali Rajion
Abstract Loh, T.C., Lee, T.M., Foo, H.L., Law, F.L. and Rajion, M.A. 2008. Growth performance and fecal microflora of rats offered metabolites from lactic acid bacteria. J. Appl. Anim. Res., 34: 61–64. The objectives of this experiment were to study the effect of metabolites produced from lactic acid bacteria (LAB) on the growth performance, Enterobacteriaceae and LAB counts in the faeces, faecal pH and plasma cholesterol. A total of 30 female postweaning rats were randomly assigned to five groups of diet: basal diet + 100% drinking water (DW), basal diet + 90% DW + 10% UL4 metabolite, basal diet + 80% DW + 20% UL4 metabolite, basal diet + 90% DW+ 10% RW18 metabolite and basal diet + 80% DW + 20% RW18 metabolite for a period of four weeks. The metabolites affected only Enterobacteriaceae counts and faecal pH, which were lower than the control groups. In conclusion, addition of lactic acid bacterial metabolites in the drinking water had only antibacterial effect in rats.
Biotechnology Research International | 2013
Nadimpalli Ravi S. Varma; Haryanti Toosa; Hooi Ling Foo; Noorjahan Banu Alitheen; Mariana Nor Shamsudin; Ali S. Arbab; Khatijah Yusoff; Raha Abdul Rahim
In this study, we have developed a system for display of antigens of Enterovirus type 71 (EV71) on the cell surface of L. lactis. The viral capsid protein (VP1) gene from a local viral isolate was utilized as the candidate vaccine for the development of oral live vaccines against EV71 using L. lactis as a carrier. We expressed fusion proteins in E. coli and purified fusion proteins were incubated with L. lactis. We confirmed that mice orally fed with L. lactis displaying these fusion proteins on its surface were able to mount an immune response against the epitopes of EV71. This is the first example of an EV71 antigen displayed on the surface of a food grade organism and opens a new perspective for alternative vaccine strategies against the EV71. We believe that the method of protein docking utilized in this study will allow for more flexible presentations of short peptides and proteins on the surface of L. lactis to be useful as a delivery vehicle.
Asian-australasian Journal of Animal Sciences | 2013
Loh Teck Chwen; Hooi Ling Foo; Nguyen Tien Thanh; Di Wai Choe
A study was conducted to investigate the effects of feeding medium chain triacylglycerol (MCT) on growth performance, plasma fatty acids, villus height and crypt depth in preweaning piglets. A total of 150 new born piglets were randomly assigned into one of three treatments: i) Control (no MCT); ii) MCT with milk (MCT+milk); iii) MCT without milk (MCT+fasting). Body weight, plasma fatty acid profiles, villus height and crypt depth were measured. Final BW for the Control and MCT+fasting was lower (p<0.05) than MCT+milk. The piglets fed with MCT regardless of milk provision or fasting had greater medium chain fatty acids (MCFA) than the Control. In contrast, the Control had greater long chain fatty acid (LCFA) and unsaturated fatty acid (USFA) than the MCT piglets. The piglets fed with MCT regardless of milk provision or fasting had higher villus height for the duodenum and jejunum after 6 h of feeding. Similar observations were found in piglets fed with MCT after 6 and 8 days of treatment. This study showed that feeding MCT to the piglets before weaning improved growth performance, with a greater concentration of MCT in blood plasma as energy source and a greater height of villus in duodenum, jejunum and ileum.
The Scientific World Journal | 2014
Mohamed Idris Alshelmani; Teck Chwen Loh; Hooi Ling Foo; Wei Hong Lau; Awis Qurni Sazili
Four cellulolytic and hemicellulolytic bacterial cultures were purchased from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). Two experiments were conducted; the objective of the first experiment was to determine the optimum time period required for solid state fermentation (SSF) of palm kernel cake (PKC), whereas the objective of the second experiment was to investigate the effect of combinations of these cellulolytic and hemicellulolytic bacteria on the nutritive quality of the PKC. In the first experiment, the SSF was lasted for 12 days with inoculum size of 10% (v/w) on different PKC to moisture ratios. In the second experiment, fifteen combinations were created among the four microbes with one untreated PKC as a control. The SSF lasted for 9 days, and the samples were autoclaved, dried, and analyzed for proximate analysis. Results showed that bacterial cultures produced high enzymes activities at the 4th day of SSF, whereas their abilities to produce enzymes tended to be decreased to reach zero at the 8th day of SSF. Findings in the second experiment showed that hemicellulose and cellulose was significantly (P < 0.05) decreased, whereas the amount of reducing sugars were significantly (P < 0.05) increased in the fermented PKC (FPKC) compared with untreated PKC.
Journal of Applied Animal Research | 2009
Teck Chwen Loh; L. Y. Fong; Hooi Ling Foo; N. T. Thanh; A. R. Sheikh-Omar
Abstract Loh, T.C, Fong, L.Y., Foo, H.L., Thanh, N.T. and Sheikh-Omar, A.R. 2009. Utilisation of earthworm meal in partial replacement of soybean and fish meals in diets of broilers. J. Appl. Anim. Res., 36: 29–32. To study the effect of worm meal (WM) as partial replacement of soybean and fish meals in the diets, a total of 245 day-old broiler chicks were randomly assigned to five different treatment groups (0%, 5%, 10%, 15% and 20% WM) in partial replacement of soybean and fish meals for a period of 6 weeks. The final body weight, growth rate and feed efficiency of the 10% and 15% WM groups broiler were better (P<0.05) than that of the control group with no effect on feed intake. The digestibility of crude protein for WM was 63%. 10% WM group gave a higher (P<0.05) lactic acid bacteria counts and showed no significant difference (P>0.05) in Enterobacteriaceae count or fecal pH. These results suggest that WM could be used to replace soybean and fish meals between 10 to 15% in broiler diets.