Hooman Latifi
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hooman Latifi.
Philosophical Transactions of the Royal Society B | 2014
Martin Wegmann; Luca Santini; Benjamin Leutner; Kamran Safi; Duccio Rocchini; Mirijana Bevanda; Hooman Latifi; Stefan Dech; Carlo Rondinini
The African protected area (PA) network has the potential to act as a set of functionally interconnected patches that conserve meta-populations of mammal species, but individual PAs are vulnerable to habitat change which may disrupt connectivity and increase extinction risk. Individual PAs have different roles in maintaining connectivity, depending on their size and location. We measured their contribution to network connectivity (irreplaceability) for carnivores and ungulates and combined it with a measure of vulnerability based on a 30-year trend in remotely sensed vegetation cover (Normalized Difference Vegetation Index). Highly irreplaceable PAs occurred mainly in southern and eastern Africa. Vegetation cover change was generally faster outside than inside PAs and particularly so in southern Africa. The extent of change increased with the distance from PAs. About 5% of highly irreplaceable PAs experienced a faster vegetation cover loss than their surroundings, thus requiring particular conservation attention. Our analysis identified PAs at risk whose isolation would disrupt the connectivity of the PA network for large mammals. This is an example of how ecological spatial modelling can be combined with large-scale remote sensing data to investigate how land cover change may affect ecological processes and species conservation.
International Journal of Applied Earth Observation and Geoinformation | 2015
Hooman Latifi; Fabian Ewald Fassnacht; Florian Hartig; Christian Berger; Jaime Hernández; Patricio Corvalán; Barbara Koch
Abstract Remote sensing-assisted estimates of aboveground forest biomass are essential for modeling carbon budgets. It has been suggested that estimates can be improved by building species- or strata-specific biomass models. However, few studies have attempted a systematic analysis of the benefits of such stratification, especially in combination with other factors such as sensor type, statistical prediction method and sampling design of the reference inventory data. We addressed this topic by analyzing the impact of stratifying forest data into three classes (broadleaved, coniferous and mixed forest). We compare predictive accuracy (a) between the strata (b) to a case without stratification for a set of pre-selected predictors from airborne LiDAR and hyperspectral data obtained in a managed mixed forest site in southwestern Germany. We used 5 commonly applied algorithms for biomass predictions on bootstrapped subsamples of the data to obtain cross validated RMSE and r2 diagnostics. Those values were analyzed in a factorial design by an analysis of variance (ANOVA) to rank the relative importance of each factor. Selected models were used for wall-to-wall mapping of biomass estimates and their associated uncertainty. The results revealed marginal advantages for the strata-specific prediction models over the unstratified ones, which were more obvious on the wall-to-wall mapped area-based predictions. Yet further tests are necessary to establish the generality of these results. Input data type and statistical prediction method are concluded to remain the two most crucial factors for the quality of remote sensing-assisted biomass models.
Journal of remote sensing | 2012
Hooman Latifi; Barbara Koch
We report the results from modelling standing volume, above-ground biomass and stem count with the aim of exploring the potential of two non-parametric approaches to estimate forest attributes. The models were built based on spectral and 3D information extracted from airborne optical and laser scanner data. The survey was completed across two geographically adjacent temperate forest sites in southwestern Germany, using spatially and temporally comparable remote-sensing data collected by similar instruments. Samples from the auxiliary reference stands (called off-site samples) were combined with random, random stratified and systematically stratified samples from the target area for prediction of standing volume, above-ground biomass and stem count in the target area. A range of combinations was used for the modelling process, comprising the most similar neighbour (MSN) and random forest (RF) imputation methods, three sampling designs and two predictor subset sizes. An evolutionary genetic algorithm (GA) was applied to prune the predictor variables. Diagnostic tools, including root mean square error (RMSE), bias and standard error of imputation, were employed to evaluate the results. The results showed that RF produced more accurate results than MSN (average improvement of 3.5% for a single-neighbour case with selected predictors), yet was more biased than MSN (average bias of 5.13% with RF compared to 2.44% with MSN for stem volume in a single-neighbour case with selected predictors). Combining systematically stratified auxiliary samples from the target data set with the reference data set yielded more accurate results compared to those from random and stratified random samples. Combining additional data was most influential when an intensity of up to 40% of supplementary samples was appended to the reference set. The use of GA-selected predictors resulted in reduced bias of the models. By means of bootstrap simulations of RMSE, the simulations were shown to lie within the applied non-parametric confidence intervals. The achieved results are concluded to be helpful for modelling the mentioned forest attributes by means of airborne remote-sensing data.
International Journal of Applied Earth Observation and Geoinformation | 2015
Hooman Latifi; Fabian Ewald Fassnacht; Jörg Müller; Agalya Tharani; Stefan Dech; Marco Heurich
Abstract Inventories of temperate forests of Central Europe mainly rely on terrestrial measurements. Rapid alterations of forests by disturbances and multilayer silvicultural systems increasingly challenge the use of conventional plot based inventories, particularly in protected areas. Airborne LiDAR offers an alternative or supplement to conventional inventories, but despite the possibility of obtaining such remote sensing data, its operational use for broader areas in Central Europe remains experimental. We evaluated two methods of forest inventory that use LiDAR data at the landscape level: the single tree segment-based method and an area-based method. We compared a set of structural forest attributes modeled by these methods with a conventional forest inventory of the highly heterogeneous forest of the Bavarian Forest National Park (Germany), which partially includes stands affected by severe natural disturbances. Area-based models were accurate for all structural attributes, with cross-validated average root mean squared error ranging from ∼3.4 to ∼13.4 in the best modeling case. The coefficients of variation for the mapped area-based estimations were mostly minor. The area-based estimations were varied but highly correlated (Pearson’s correlations between ∼ 0.56 and 0.85) with single tree segmentation estimations; undetected trees in the single tree segmentat-based method were the main sources of inconsistency. The single tree segment-based method was highly correlated (∼ 0.54 to 0.90) with data from ground-based forest inventories. The single tree-based algorithm delivered highly reliable estimates for a set of forest structural attributes that are of interest in forest inventories at the landscape scale. We recommend LiDAR forest inventories at the landscape scale in both heterogeneous commercial forests and large protected areas in the central European temperate sites.
International Journal of Digital Earth | 2012
Hooman Latifi; Arne Nothdurft; Christoph Straub; Barbara Koch
Improvements in the acquisition of three-dimensional (3D) information from the Airborne Laser Scanner (ALS) increase its applications for studying Earths surface. The use of ALS data in natural resource inventories is still in an experimental stage in central Europe. Here, a survey was completed in Germany, where plot-level features from LANDSAT Thematic Mapper and ALS data were applied. An automated process was developed for forest stratification using orthoimages. A genetic algorithm was applied for variable screening. Variable subsets of different sizes were employed for simultaneous predictions of structural forest attributes using the ‘Random Forest’ (RF) method. Performance was assessed by leave-one-out cross-validations on bootstrap resample data. Results indicate that the stratification of forest notably improved the results of predictions. The improvements were more obvious for the strata-related attributes. Accuracy was enhanced as the number of selected variables increased. However, parsimonious models are still essentially required for practical applications. The RF errors were slightly greater than those from least squares regression, as the non-parametric methods do not share the same mix of error components as regression. Through the combination of remote sensing and modelling, we conclude that our results are helpful for bridging the gap between regional earth observation and on-the-ground forest structure.
Environmental Monitoring and Assessment | 2014
Hooman Latifi; Bastian Schumann; Markus Kautz; Stefan Dech
Biological infestations in forests, e.g. the insect outbreaks, have been shown as favoured by future climate change trends. In Europe, the European spruce bark beetle (Ips typographus L.) is one of the main agents causing substantial economic disturbances in forests. Therefore, studies on spatio-temporal characterization of the area affected by bark beetle are of major importance for rapid post-attack management. We aimed at spatially detecting damage classes by combining multidate remote sensing data and a non-parametric classification. As study site served a part of the Bavarian Forest National Park (Germany). For the analysis, we used 10 geometrically rectified scenes of Landsat and SPOT sensors in the period between 2001 and 2011. The main objective was to explore the potential of medium-resolution data for classifying the attacked areas. A further aim was to explore if the temporally adjacent infested areas are able to be separated. The random forest (RF) model was applied using the reference data drawn from high-resolution aerial imagery. The results indicate that the sufficiently large patches of visually identifiable damage classes can be accurately separated from non-attacked areas. In contrast to those, the other mortality classes (current year, current year 1 and current year 2 infested classes) were mostly classified with higher commission or omission errors as well as higher classification biases. The available medium-resolution satellite images, combined with properly acquired reference data, are concluded to be adequate tools to map area-based infestations at advanced stages. However, the quality of reference data, the size of infested patches and the spectral resolution of remotely sensed data are the decisive factors in case of smaller areas. Further attempts using auxiliary height information and spatially enhanced data may refine such an approach.
Archive | 2012
Hooman Latifi
Forest management comprises of a wide range of planning stages and activities which are highly variable according to the goals and strategies being pursued. Furthermore, those activities often include a requirement for description of condition and dynamics of forests (Koch et al., 2009). Forest ecosystems are often required to be described by a set of general characteristics including composition, function, and structure (Franklin, 1986). Composition is described by presence or dominance of woody species or by relative indices of biodiversity. Forest functional characteristics are related to issues like types and rates of processes such as carbon sequestration. Apart from them, the physical characteristics of forests are essential to be expressed. This description is often accomplished under the general concept of forest structure. However, the entire above-mentioned characteristics are required for timber management/procurement practices, as well as for mapping forests into smaller units or compartments.
Progress in Physical Geography | 2014
Hooman Latifi; Fabian Ewald Fassnacht; Bastian Schumann; Stefan Dech
As major agents of biological disturbances, bark beetle infestations have been reported to account for a large portion of damage that occur in European forest stands. As a result, accurate spatiotemporal characterization of the vulnerable areas is crucial for subsequent post-infestation management. Remote sensing-assisted mapping of bark beetle-induced forest mortality has been an important research focus during the last decade. Due to the occurrence of mostly small- to medium-scale infestation patches in European stands, high-resolution optical data is commonly applied for mapping mortality. Despite this, we hypothesize the widely available satellite products to be potentially advantageous due to their multitemporal availability and reasonable costs. Here, we combined multi-date LANDSAT and SPOT scenes across an 11-year time span in which various epidemic and non-epidemic infestations occurred within the Bavarian Forest National Park in Germany. The aim was to map temporally adjacent mortality classes. The spectral, geometric and textural metrics extracted from the segmented imagery were applied to perform a full object-based classification, for which a digital terrain model was additionally employed. A number of potentially influential factors were also explored, including the spatial aggregation of image segments and the spatial enhancement of the multispectral imagery. The analysis resulted in a nearly perfect separation of non-infested and dead trees, while different levels of confusion were observed when classifying the transitional mortality classes. While the pan-sharpening of selected image scenes contributed to the stability of mapping results for non-infested and dead trees, no explicit trend was observed when aggregating small image segments prior to classification. Furthermore, combining the metrics from image objects and the digital terrain model suggested an obviously improved classification compared to the previously achieved pixel-based results across the same study site. In this paper, we thoroughly discuss the practical aspects of applying object-based image processing for monitoring bark beetle-induced forest mortality.
International Journal of Applied Earth Observation and Geoinformation | 2017
Zhihui Wang; Andrew K. Skidmore; Tiejun Wang; R. Darvishzadeh; Uta Heiden; Marco Heurich; Hooman Latifi; John W. Hearne
A statistical relationship between canopy mass-based foliar nitrogen concentration (%N) and canopy bidirectional reflectance factor (BRF) has been repeatedly demonstrated. However, the interaction between leaf properties and canopy structure confounds the estimation of foliar nitrogen. The canopy scattering coefficient (the ratio of BRF and the directional area scattering factor, DASF) has recently been suggested for estimating %N as it suppresses the canopy structural effects on BRF. However, estimation of %N using the scattering coefficient has not yet been investigated for longer spectral wavelengths (>855 nm). We retrieved the canopy scattering coefficient for wavelengths between 400 and 2500 nm from airborne hyperspectral imagery, and then applied a continuous wavelet analysis (CWA) to the scattering coefficient in order to estimate %N. Predictions of %N were also made using partial least squares regression (PLSR). We found that %N can be accurately retrieved using CWA (R2 = 0.65, RMSE = 0.33) when four wavelet features are combined, with CWA yielding a more accurate estimation than PLSR (R2 = 0.47, RMSE = 0.41). We also found that the wavelet features most sensitive to %N variation in the visible region relate to chlorophyll absorption, while wavelet features in the shortwave infrared regions relate to protein and dry matter absorption. Our results confirm that %N can be retrieved using the scattering coefficient after correcting for canopy structural effect. With the aid of high-fidelity airborne or upcoming space-borne hyperspectral imagery, large-scale foliar nitrogen maps can be generated to improve the modeling of ecosystem processes as well as ecosystem-climate feedbacks.
International Journal of Remote Sensing | 2018
Ramiro Silveyra Gonzalez; Hooman Latifi; Holger Weinacker; Matthias Dees; Barbara Koch; Marco Heurich
ABSTRACT Land-cover mapping (LCM) at a fine scale would be useful for forest management across heterogeneous natural landscapes. However, the heterogeneity of land covers at such scales results in complex spectral and textural properties that hinder the applicability of LCM. Besides, the method suffers from, e.g. inconsistent representation of different land-cover types, lack of sufficient and balanced training samples, and instability of classifiers trained by a high number of predictor variables. Even well-known object-based classification approaches are challenged with an objective evaluation of segmentation outputs. Here we classified partially ambiguous land-cover types across heterogeneous forest landscapes in the Bavarian Forest National Park (Germany) by combining metrics from airborne light detection and ranging (LiDAR) and colour infrared (CIR) imagery data and a random forest classifier implemented in an object-based paradigm. We evaluated the segmentation results by creating a global quality score based on inter- and intra-measurements of variance and the number of segments. Selected segmentation outputs were combined with balanced training samples to run the classification algorithm based on representative blocks within the national park. The entire processing chain was implemented in an open-source domain. The final segmentation consisted of LiDAR-based height, image-based Normalized Difference Vegetation Index (NDVI) and red band, with 20 cluster seeds and a minimum segment size of 40 pixels. In the classification, the most important variables included the height of the top layer, NDVI, Enhanced Vegetation Index (EVI) and Green–Red Vegetation Index (GRVI). The average values of 500 random forest runs indicated an overall accuracy of 86.6% and an estimated Cohen’s kappa coefficient of 85.2%, with different probabilities of correct classification for land-cover classes. Mature deciduous, standing deadwood, fallen deadwood, meadow, and bare soil classes were classified most accurately, whereas classification of young coniferous, intermediate-age coniferous, mature coniferous, young deciduous, and intermediate-age deciduous were associated with the highest uncertainties. Our methodology is sufficiently robust to be applied to other similarly structured sites across temperate forested landscapes. The versatility of the method is partially guaranteed by the proposed segmentation quality score, which satisfactorily corrects under- and over-segmentation.