Hope Barkoukis
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hope Barkoukis.
The American Journal of Clinical Nutrition | 2010
Thomas P. J. Solomon; Jacob M. Haus; Karen R. Kelly; Marc Cook; Julianne Filion; Michael Rocco; Sangeeta R. Kashyap; Richard M. Watanabe; Hope Barkoukis; John P. Kirwan
BACKGROUND The optimal lifestyle intervention that reverses diabetes risk factors is not known. OBJECTIVE We examined the effect of a low-glycemic index (GI) diet and exercise intervention on glucose metabolism and insulin secretion in obese, prediabetic individuals. DESIGN Twenty-two participants [mean ± SEM age: 66 ± 1 y; body mass index (in kg/m(2)): 34.4 ± 0.8] underwent a 12-wk exercise-training intervention (1 h/d for 5 d/wk at ≈ 85% of maximum heart rate) while randomly assigned to receive either a low-GI diet (LoGIX; 40 ± 0.3 units) or a high-GI diet (HiGIX; 80 ± 0.6 units). Body composition (measured by using dual-energy X-ray absorptiometry and computed tomography), insulin sensitivity (measured with a hyperinsulinemic euglycemic clamp with [6,6-(2)H(2)]-glucose), and oral glucose-induced insulin and incretin hormone secretion were examined. RESULTS Both groups lost equal amounts of body weight (-8.8 ± 0.9%) and adiposity and showed similar improvements in peripheral tissue (+76.2 ± 14.9%) and hepatic insulin sensitivity (+27.1 ± 7.1%) (all P < 0.05). However, oral glucose-induced insulin secretion was reduced only in the LoGIX group (6.59 ± 0.86 nmol in the prestudy compared with 4.70 ± 0.67 nmol in the poststudy, P < 0.05), which was a change related to the suppressed postprandial response of glucose-dependent insulinotropic polypeptide. When corrected for changes in β cell glucose exposure, changes in insulin secretion were attenuated in the LoGIX group but became significantly elevated in the HiGIX group. CONCLUSIONS Although lifestyle-induced weight loss improves insulin resistance in prediabetic individuals, postprandial hyperinsulinemia is reduced only when a low-GI diet is consumed. In contrast, a high-GI diet impairs pancreatic β cell and intestinal K cell function despite significant weight loss. These findings highlight the important role of the gut in mediating the effects of a low-GI diet on type 2 diabetes risk reduction.
Journal of Nutrition | 2011
Karen R. Kelly; Jacob M. Haus; Thomas P. J. Solomon; Aimee Patrick-Melin; Marc Cook; Michael Rocco; Hope Barkoukis; John P. Kirwan
Low-glycemic index diets and exercise independently improve glucose tolerance and reduce diabetes risk. However, the combined effect of a low-glycemic index diet and exercise on inflammation and glucose metabolism is not known. Therefore, we randomized 28 insulin-resistant adults (age: 66 ± 1 y; BMI: 34.2 ± 0.7 kg · m(-2)) to a 12-wk, low (LGI = 40) or high- (HGI = 80) glycemic index diet plus aerobic exercise (5 d · wk(-1), 60 min · d(-1), 80-85% heart rate(max)) intervention. All food and fluids were provided during the study. Inflammation was assessed from cytokine (TNFα and IL-6) secretion using peripheral blood mononuclear cells (MNC) stimulated overnight with LPS. Glycemic response was determined following ingestion of a 75-g glucose solution. Fasting blood samples were collected for additional cytokine [TNFα, IL-6, and monocyte chemoattractant protein 1 (MCP-1)] analysis. Both interventions decreased BMI (P < 0.001), fasting plasma glucose (P = 0.01), and insulin (P = 0.02). The glycemic response was reduced only in the LGI group (P = 0.04). Plasma and MNC-derived TNFα secretion were reduced in the LGI group (P = 0.02) but increased in the HGI group (P = 0.02). Secretion of IL-6 from MNC and plasma IL-6 and MCP-1 concentrations were reduced in the LGI group. The change in MNC-derived TNFα (r = 0.43; P = 0.04) and plasma MCP-1 (r = 0.44; P = 0.04) correlated with decreases in the glycemic response. These data highlight the importance of diet composition in the treatment and prevention of inflammation and hyperglycemia. A low-glycemic index diet has antiinflammatory and antidiabetogenic effects when combined with exercise in older, obese prediabetics.
The American Journal of Clinical Nutrition | 2009
Thomas P. J. Solomon; Jacob M. Haus; Karen R. Kelly; Marc Cook; Michelle Riccardi; Michael Rocco; Sangeeta R. Kashyap; Hope Barkoukis; John P. Kirwan
BACKGROUND The optimal combination of diet and exercise that produces the greatest reversal of obesity-related insulin resistance is unknown. OBJECTIVES We examined the effects of a combined 7-d low-glycemic index (low-GI) diet and exercise training intervention on insulin sensitivity in older obese humans. DESIGN Participants [n = 32; mean (+/-SEM) age: 66 +/- 1 y; body mass index (in kg/m(2)): 33.8 +/- 0.7] were randomly assigned to a parallel, double-blind, controlled-feeding trial and underwent supervised aerobic exercise (EX; 60 min/d at 80-85% maximum heart rate) in combination with either a low-GI (LoGI + EX: 41.1 +/- 0.4) or a high-GI (HiGI + EX: 80.9 +/- 0.6) diet. All meals were provided and were isocaloric to individual energy requirements. Insulin sensitivity and hepatic glucose production were assessed with a 40-mU x m(-2) x min(-1) hyperinsulinemic euglycemic clamp combined with a [6,6-(2)H(2)]-glucose infusion. RESULTS After the intervention, small decreases were observed in body weight (-1.6 +/- 0.2 kg; P < 0.0001) and fat mass (-1.7 +/- 0.9%; P = 0.004) in both groups. Maximal aerobic capacity ( O(2)max) also improved slightly (0.06 +/- 0.02 L/min; P = 0.004). Resting systolic blood pressure, fasting glucose, insulin, triglycerides, and cholesterol all decreased after the study (all P < 0.05). Larger changes in systolic blood pressure and O(2max) were seen in the LoGI + EX group. Insulin-stimulated glucose disposal (P < 0.001), insulin suppression of hepatic glucose production (P = 0.004), and postabsorptive fat oxidation (P = 0.03) improved equally in both groups after the intervention. CONCLUSIONS These findings suggest that the metabolic improvements after short-term exercise training in older obese individuals are dependent on increased physical activity and are not influenced by a low-GI diet. However, a low-GI diet has added benefit in alleviating hypertension, thus reducing the risk of diabetic and vascular complications.
Annals of Nutrition and Metabolism | 2012
Steven K. Malin; Nicole Niemi; Thomas P. J. Solomon; Jacob M. Haus; Karen R. Kelly; Julianne Filion; Michael Rocco; Sangeeta R. Kashyap; Hope Barkoukis; John P. Kirwan
Background: The efficacy of combining carbohydrate quality with exercise on metabolic syndrome risk is unclear. Thus, we determined the effects of exercise training with a low (LoGIx)- or high (HiGIx)-glycemic index diet on the severity of the metabolic syndrome (Z-score). Methods: Twenty-one adults (66.2 ± 1.1 years; BMI = 35.3 ± 0.9 kg/m2) with the metabolic syndrome were randomized to 12 weeks of exercise (60 min/day for 5 days/week at about 85% HRmax) and provided a LoGIx (n = 11) or HiGIx (n = 10) diet. Z-scores were determined from: blood pressure, triglycerides (TGs), high-density lipoproteins (HDLs), fasting plasma glucose (FPG), and waist circumference (WC) before and after the intervention. Body composition, aerobic fitness, insulin resistance, and nonesterfied fatty acid (NEFA) suppression were also assessed. Results: LoGIx and HiGIx diets decreased body mass and insulin resistance and increased aerobic fitness comparably (p < 0.05). LoGIx and HiGIx diets decreased the Z-score similarly as each intervention decreased blood pressure, TGs, FPG and WC (p < 0.05). The HiGIx diet tended to suppress NEFA during insulin stimulation compared with the LoGIx diet (p = 0.06). Conclusions: Our findings highlight that exercise with weight loss reduces the severity of the metabolic syndrome whether individuals were randomized to a HiGIx or a LoGIx diet.
American Journal of Physiology-endocrinology and Metabolism | 2011
Jacob M. Haus; Thomas P. J. Solomon; Lan Lu; John A. Jesberger; Hope Barkoukis; Chris A. Flask; John P. Kirwan
The relationship between intramyocellular (IMCL) and extramyocellular lipid (EMCL) accumulation and skeletal muscle insulin resistance is complex and dynamic. We examined the effect of a short-term (7-day) low-glycemic index (LGI) diet and aerobic exercise training intervention (EX) on IMCL and insulin sensitivity in older, insulin-resistant humans. Participants (66 ± 1 yr, BMI 33 ± 1 kg/m(2)) were randomly assigned to a parallel, controlled feeding trial [either an LGI (LGI/EX, n = 7) or high GI (HGI/EX, n = 8) eucaloric diet] combined with supervised exercise (60 min/day, 85% HR(max)). Insulin sensitivity was determined via 40 mU·m(-2)·min(-1) hyperinsulinemic euglycemic clamp and soleus IMCL and EMCL content was assessed by (1)H-MR spectroscopy with correction for fiber orientation. BMI decreased (kg/m(2) -0.6 ± 0.2, LGI/EX; -0.7 ± 0.2, HGI/EX P < 0.0004) after both interventions with no interaction effect of diet composition. Clamp-derived insulin sensitivity increased by 0.91 ± 0.21 (LGI/EX) and 0.17 ± 0.55 mg·kg(-1)·min(-1) (HGI/EX), P = 0.04 (effect of time). HOMA-IR was reduced by -1.1 ± 0.4 (LGI/EX) and -0.1 ± 0.2 (HGI/EX), P = 0.007 (effect of time), P = 0.02 (time × trial). Although both interventions increased IMCL content, (Δ: 2.3 ± 1.3, LGI/EX; 1.4 ± 0.9, HGI/EX, P = 0.03), diet composition did not significantly effect the increase. However, the LGI/EX group showed a robust increase in the [IMCL]/[EMCL] ratio compared with the HGI/EX group (Δ: 0.5 ± 0.2 LGI/EX vs. 0.07 ± 0.1, P = 0.03). The LGI/EX group also demonstrated greater reductions in [EMCL] than the HGI/EX group (Δ: -5.8 ± 3.4, LGI/EX; 2.3 ± 1.1, HGI/EX, P = 0.03). Changes in muscle lipids and insulin sensitivity were not correlated; however, the change in [IMCL]/[EMCL] was negatively associated with the change in FPI (r = -0.78, P = 0.002) and HOMA-IR (r = -0.61, P = 0.03). These data suggest that increases in the IMCL pool following a low glycemic diet and exercise intervention may represent lipid repartitioning from EMCL. The lower systemic glucose levels that prevail while eating a low glycemic diet may promote redistribution of lipid stores in the muscle.
Medicine and Science in Sports and Exercise | 2014
Karen R. Kelly; Sankar D. Navaneethan; Thomas P. J. Solomon; Jacob M. Haus; Marc Cook; Hope Barkoukis; John P. Kirwan
PURPOSE Several studies have identified relationships between weight loss and adipokine levels; however, none have looked at the combined effect of aerobic exercise training with the consumption of a low- or a high-glycemic diet. We examined the effects of 12 wk of aerobic exercise combined with either a low-glycemic index diet (∼40 U) plus exercise (LoGIX) or a high-glycemic index diet (∼80 U) diet plus exercise (HiGIX) on plasma leptin and adiponectin (total and high molecular weight [HMW]) in 27 older obese adults (age = 65 ± 0.5 yr, body mass index = 34.5 ± 0.7 kg·m). METHODS Insulin sensitivity was calculated from an oral glucose tolerance test. Fasting HMW adiponectin and leptin were quantified from plasma samples obtained before the insulin sensitivity index obtained from the oral glucose tolerance test. Glucose and insulin measures were obtained before and every 30 min during the test. Dual-energy x-ray absorptiometry and computerized tomography were used to determine body composition and to quantify subcutaneous and visceral abdominal adiposity, respectively. RESULTS Fasting leptin was significantly decreased in both groups (LoGIX: preintervention = 33.8 ± 4.7, postintervention = 19.2 ± 4.5; HiGIX: preintervention = 27.9 ± 4.2, postintervention = 11.9 ± 2.2 ng·mL; P = 0.004), and HMW adiponectin was significantly increased (LoGIX: preintervention = 1606.9 ± 34.6, postintervention = 3502.3 ± 57; HiGIX: preintervention = 3704.8 ± 38.1, postintervention = 4284.3 ± 52.8 pg·mL; P = 0.003) after the 12-wk intervention. Total body fat was reduced after both interventions. Visceral fat mass was inversely correlated with HMW adiponectin, whereas subcutaneous fat correlated with leptin. CONCLUSIONS The data suggest that exercise training, independent of dietary glycemic index, favorably alters HMW adiponectin and leptin secretion and that a reduction in visceral fat mass is a key factor regulating HMW adiponectin in older obese persons.
Annals of Nutrition and Metabolism | 2007
Hope Barkoukis; Christine M. Marchetti; Brian Nolan; Sakita N. Sistrun; Raj K. Krishnan; John P. Kirwan
Background/Aims: To evaluate the metabolic effects of meals with varying glycemic index (GI). Methods: We measured the glucose, insulin and leptin responses to two contrasting breakfast cereals in a group of 10 young healthy volunteers. Meals were provided on two separate occasions in random order after a 12-hour overnight fast, and consisted of 50 g of available carbohydrate from either Corn Flakes (Kellogg’s), or Fiber One® (General Mills). Blood samples were obtained at rest, and 30, 60, 90 and 120 min after eating. The GI was calculated from the glucose response to the test meal normalized against a 50 g oral glucose load. Results: The GI for Corn Flakes was 125 ± 17 units and 49 ± 8 units for Fiber One®. These meals were classified as high GI and low GI, respectively, and were significantly different from each other (p < 0.0003). The area under the insulin response curve (AUC) following the low glycemic meal was significantly attenuated compared to the high glycemic meal (14,064 ± 2,694 vs. 6,828 ± 1,182 pmol/l·min, p < 0.02). The leptin AUC revealed that circulating leptin was suppressed by the high glycemic meal compared to the low (3.1 ± 1.5 vs. 9.6 ± 3.6 ng/ml·min, p < 0.04). Conclusions: Lower insulin and higher leptin suggests that low glycemic meals promote a postprandial metabolic milieu that is favorable for reduced food consumption; this may be advantageous in the control of obesity and related disorders including insulin resistance and type 2 diabetes.
Annals of Nutrition and Metabolism | 2009
John P. Kirwan; Hope Barkoukis; Latina M. Brooks; Christine M. Marchetti; Bradley Stetzer; Frank González
Background/Aims: The aim of this study was to assess the combined effects of exercise and dietary glycemic load on insulin resistance in older obese adults. Methods: Eleven men and women (62 ± 2 years; 97.6 ± 4.8 kg; body mass index 33.2 ± 2.0) participated in a 12-week supervised exercise program, 5 days/week, for about 1 h/day, at 80–85% of maximum heart rate. Dietary glycemic load was calculated from dietary intake records. Insulin resistance was determined using the euglycemic (5.0 mM) hyperinsulinemic (40 mU/m2/min) clamp. Results: The intervention improved insulin sensitivity (2.37 ± 0.37 to 3.28 ± 0.52 mg/kg/min, p < 0.004), increased VO2max (p < 0.009), and decreased body weight (p < 0.009). Despite similar caloric intakes (1,816 ± 128 vs. 1,610 ± 100 kcal/day), dietary glycemic load trended towards a decrease during the study (140 ± 10 g before, vs. 115 ± 8 g during, p < 0.04). The change in insulin sensitivity correlated with the change in glycemic load (r = 0.84, p < 0.009). Four subjects reduced their glycemic load by 61 ± 8%, and had significantly greater increases in insulin sensitivity (78 ± 11 vs. 23 ± 8%, p < 0.003), and decreases in body weight (p < 0.004) and plasma triglycerides (p < 0.04) compared to the rest of the group. Conclusion: The data suggest that combining a low-glycemic diet with exercise may provide an alternative and more effective treatment for insulin resistance in older obese adults.
Medical Clinics of North America | 2016
Hope Barkoukis
Maintaining optimal health and well-being in the older adult requires understanding of how physiologic changes influence nutritional status, familiarity with the available validated tools to assess status, identification of factors predisposing older adults to malnutrition, and evidence-based practice regarding the nutritional needs of this age group. Evidence-based guidance on these core practice components is provided to the clinician in this article.
Current Nutrition Reports | 2016
Hope Barkoukis
The involuntary loss of lean muscle mass that accompanies aging, or sarcopenia, necessitates identification of strategies that can blunt muscle protein breakdown and enhance muscle protein synthesis. This chapter focuses on the key factors impacting muscle protein synthesis in the elderly including adequacy of total caloric intake, a focus on the total daily quantity of high quality protein, a balanced pattern of protein ingestion per meal, characteristics regarding protein quality, anabolic resistance of aging, and achieving an adequacy of the essential amino acid, leucine, in each meal. A discussion is included regarding the existing limitations in current dietary protein recommendations for the elderly and the challenges of exaggerated muscle loss secondary to disuse.