Hope C. Ball
University of Akron
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hope C. Ball.
General and Comparative Endocrinology | 2010
Qin Liu; Yun Chen; Donald L. Copeland; Hope C. Ball; Robert J. Duff; Briana Rockich; Richard L. Londraville
Interactions of leptin and leptin receptors play crucial roles during animal development and regulation of appetite and energy balance. In this study we analyzed expression pattern of a zebrafish leptin receptor gene in both developing and adult zebrafish using in situ hybridization and Q-PCR methods. Zebrafish leptin receptor message (lepr) was detected in all embryonic and larval stages examined, and in adult zebrafish. In embryonic zebrafish, lepr was mainly expressed in the notochord. As development proceeded, lepr expression in the notochord decreased, while its expression in several other tissues, including the trunk muscles and gut, became evident. In both larval and adult brains, large lepr expressing cells were detected in similar regions of the hindbrain. In adult zebrafish, lepr expression was also observed in several other brain regions including the hypothalamic lateral tuberal nucleus, the fish homolog of the arcuate nucleus. Q-PCR experiments confirmed lepr expression in the adult fish brain, and also showed lepr expression in several adult tissues including liver, muscle and gonads. Our results showed that lepr expression was both spatially and temporally regulated.
Peptides | 2012
Jeremy W. Prokop; Robert J. Duff; Hope C. Ball; Donald L. Copeland; Richard L. Londraville
Leptin is a circulating protein which regulates dietary intake through binding the leptin receptor. Numerous labs have used known structures and mutagenesis to study this binding process in common animal models (human, mouse and rat). Understanding this binding process in other vertebrate species will allow for a better understanding of leptin and leptin receptor function. The binding site between leptin and leptin receptor is highly conserved in mammals as confirmed through sequence alignments mapped onto structures of both leptin and leptin receptor. More variation in this interaction is found in lizard and frog sequences. Using our models, we show that the avian leptin sequences have far less variation in the binding site than does the leptin receptor. This analysis further suggests that avian leptins are artifactual. In fish, gene duplication events have led to the expression of multiple leptin proteins. These multiple leptin proteins have variation in the regions interacting with leptin receptor. In zebrafish and the Japanese rice fish, we propose that leptin A has a higher binding energy than does B. Differing binding energies are evidence of either divergent functions, different binding confirmations, or other protein partners of leptin B.
PLOS ONE | 2014
Jeremy W. Prokop; Cameron Schmidt; Donald Gasper; Robert J. Duff; Amy Milsted; Takeshi Ohkubo; Hope C. Ball; Matthew D. Shawkey; Herman L. Mays; Larry A. Cogburn; Richard L. Londraville
Leptin is a pleiotropic protein best known for regulation of appetite and fat storage in mammals. While many leptin orthologs have been identified among vertebrates, an authentic leptin in birds has remained elusive and controversial. Here we identify leptin sequence from the Peregrine falcon, Falco peregrinus (pfleptin), and identify sequences from two other birds (mallard and zebra finch), and ‘missing’ vertebrates (elephant shark, alligator, Indian python, Chinese soft-shelled turtle, and coelacanth). The pattern of genes surrounding leptin (snd1, rbm28) is syntenic between the falcon and mammalian genomes. Phylogenetic analysis of all known leptin protein sequences improves our understanding of leptin’s evolution. Structural modeling of leptin orthologs highlights a highly conserved hydrophobic core in the four-helix cytokine packing domain. A docked model of leptin with the leptin receptor for Peregrine falcon reveals several conserved amino acids important for the interaction and possible coevolution of leptin with its receptor. We also show for the first time, an authentic avian leptin sequence that activates the JAK-STAT signaling pathway. These newly identified sequences, structures, and tools for avian leptin and its receptor will allow elucidation of the function of these proteins in feral and domestic birds.
Journal of Eukaryotic Microbiology | 2008
Robert J. Duff; Hope C. Ball; Peter J. Lavrentyev
ABSTRACT. The value of molecular databases for unicellular eukaryotic identification and phylogenetic reconstruction is predicated on the availability of sequences and accuracy of taxonomic identifications that accompany those sequences. Biased representation of sequences is due in part to the differing ability to isolate and culture various groups of protists. Techniques that allow for parallel single‐cell morphological and molecular identifications have been reported for a few groups of unicellular protists. We have sought to explore how those techniques can be adapted to work across a greater phylogenetic diversity of taxa. Twelve morphologically diverse and abundant members of limnetic microplankton, including ciliates, dinoflagellates, cryptophytes, stramenopiles, and synurophytes, were targeted for analysis. These cells were captured directly from environmental samples, identified, and prepared for sequence analyses using variations of single‐cell extraction techniques depending on their size, mobility, and the absence or presence of the cell wall. The application of these techniques yielded a strong congruence between the morphological and molecular identifications of the targeted taxa. Challenges to the single‐cell approach in some groups are discussed. The general ability to obtain DNA sequences and morphological descriptions from individual cells should open new avenues to studying either rare or difficult to culture taxa, even directly at the point of collection (e.g. remote locations or shipboard).
PLOS ONE | 2013
Hope C. Ball; Robert K. Holmes; Richard L. Londraville; J. G. M. Thewissen; Robert J. Duff
Leptin is the primary hormone in mammals that regulates adipose stores. Arctic adapted cetaceans maintain enormous adipose depots, suggesting possible modifications of leptin or receptor function. Determining expression of these genes is the first step to understanding the extreme physiology of these animals, and the uniqueness of these animals presents special challenges in estimating and comparing expression levels of mRNA transcripts. Here, we compare expression of two model genes, leptin and leptin-receptor gene-related product (OB-RGRP), using two quantitative real-time PCR (qPCR) methods: “relative” and “absolute”. To assess the expression of leptin and OB-RGRP in cetacean tissues, we first examined how relative expression of those genes might differ when normalized to four common endogenous control genes. We performed relative expression qPCR assays measuring the amplification of these two model target genes relative to amplification of 18S ribosomal RNA (18S), ubiquitously expressed transcript (Uxt), ribosomal protein 9 (Rs9) and ribosomal protein 15 (Rs15) endogenous controls. Results demonstrated significant differences in the expression of both genes when different control genes were employed; emphasizing a limitation of relative qPCR assays, especially in studies where differences in physiology and/or a lack of knowledge regarding levels and patterns of expression of common control genes may possibly affect data interpretation. To validate the absolute quantitative qPCR methods, we evaluated the effects of plasmid structure, the purity of the plasmid standard preparation and the influence of type of qPCR “background” material on qPCR amplification efficiencies and copy number determination of both model genes, in multiple tissues from one male bowhead whale. Results indicate that linear plasmids are more reliable than circular plasmid standards, no significant differences in copy number estimation based upon background material used, and that the use of ethanol precipitated, linearized plasmid preparation produce the most reliable results.
Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2017
Hope C. Ball; Richard L. Londraville; Jeremy W. Prokop; John C. George; Robert Suydam; Christopher J. Vinyard; J. G. M. Thewissen; Robert J. Duff
The processes of lipid deposition and utilization, via the gene leptin (Lep), are poorly understood in taxa with varying degrees of adipose storage. This study examines how these systems may have adapted in marine aquatic environments inhabited by cetaceans. Bowhead (Balaena mysticetus) and beluga whales (Delphinapterus leucas) are ideal study animals—they possess large subcutaneous adipose stores (blubber) and undergo bi-annual migrations concurrent with variations in food availability. To answer long-standing questions regarding how (or if) energy and lipid utilization adapted to aquatic stressors, we quantified variations in gene transcripts critical to lipid metabolism related to season, age, and blubber depth. We predicted leptin tertiary structure conservation and assessed inter-specific variations in Lep transcript numbers between bowheads and other mammals. Our study is the first to identify seasonal and age-related variations in Lep and lipolysis in these cetaceans. While Lep transcripts and protein oscillate with season in adult bowheads reminiscent of hibernating mammals, transcript levels reach up to 10 times higher in bowheads than any other mammal. Data from immature bowheads are consistent with the hypothesis that short baleen inhibits efficient feeding. Lipolysis transcripts also indicate young Fall bowheads and those sampled during Spring months limit energy utilization. These novel data from rarely examined species expand the existing knowledge and offer unique insight into how the regulation of Lep and lipolysis has adapted to permit seasonal deposition and maintain vital blubber stores.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2015
Hope C. Ball; Madeline Stavarz; Jonathan Oldaker; Sharon Usip; Richard L. Londraville; John C. George; Johnannes G.M. Thewissen; Robert J. Duff
Cetacean evolution was shaped by an extraordinary land‐to‐sea transition in which the ancestors of whales became fully aquatic. As part of this transition, these mammals evolved unusually thick blubber which acts as a metabolic reservoir as well as an insulator and provides buoyancy and streamlining. This study describes blubber stratification and correlates it to seasonal variation, feeding patterns, and ontogeny in an arctic‐adapted mysticete, the bowhead whale (Balaena mysticetus). Bowheads are unique among mammals for possessing the largest known blubber stores. We found that adipocyte numbers in bowheads, like other mammals, do not vary with season or feeding pattern but that adipocyte size and structural fiber densities do vary with blubber depth. Anat Rec, 298:1416–1423, 2015.
PLOS ONE | 2014
Jeremy W. Prokop; Cameron Schmidt; Donald Gasper; Robert J. Duff; Amy Milsted; Takeshi Ohkubo; Hope C. Ball; Matthew D. Shawkey; Herman L. Mays; Larry A. Cogburn; Richard L. Londraville
PLOS ONE | 2014
Jeremy W. Prokop; Cameron Schmidt; Donald Gasper; Robert J. Duff; Amy Milsted; Takeshi Ohkubo; Hope C. Ball; Matthew D. Shawkey; Herman L. Mays; Larry A. Cogburn; Richard L. Londraville
PLOS ONE | 2014
Jeremy W. Prokop; Cameron Schmidt; Donald Gasper; Robert J. Duff; Amy Milsted; Takeshi Ohkubo; Hope C. Ball; Matthew D. Shawkey; Herman L. Mays; Larry A. Cogburn; Richard L. Londraville