Horacio Leyva
Universidad de Sonora
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Horacio Leyva.
Siam Journal on Control and Optimization | 2013
Horacio Leyva; Julio Solís-Daun; Rodolfo Suárez
Our main purpose in this paper is to address the problem of synthesis of regular feedback controls for the global asymptotic stabilization (gas) of nonlinear systems with controls taking values in the
IFAC Proceedings Volumes | 2011
Julio Solís-Daun; Horacio Leyva
m
mediterranean conference on control and automation | 2014
Julio Solís-Daun; Horacio Leyva
-dimensional
conference on decision and control | 2014
Horacio Leyva; Julio Solís-Daun
\mathbf{r}
IFAC Proceedings Volumes | 2005
M.E. Frías; Fernando Verduzco; Horacio Leyva; Francisco A. Carrillo
-weighted hyperbox
Boletin De La Sociedad Matematica Mexicana | 2017
Baltazar Aguirre-Hernández; Francisco A. Carrillo; Jesús F. Espinoza; Horacio Leyva
\mathcal{B}_{\mathbf{r}}^{m}(\infty):=[-r_{1}^{-},r_{1}^{+}]\times\cdots\times[-r_{m}^{-},r_{m}^{+}]
IFAC Proceedings Volumes | 2012
Baltazar Aguirre-Hernández; Ricardo García; Horacio Leyva; Julio Solís-Daun; Francisco A. Carrillo; Rodolfo Suárez
. Working along the line of Artstein and Sontags control Lyapunov function (clf) approach, we study the conditions for the gas of affine systems provided an appropriate clf is known, and propose an explicit formula for a one-parameterized family of bounded regular feedback global stabilizers. The case of scalar bounded positive feedback controls (
Boletin De La Sociedad Matematica Mexicana | 2015
Baltazar Aguirre-Hernández; Ricardo García-Sosa; Horacio Leyva; Julio Solís-Daun; Francisco A. Carrillo
r^{-}=0
Journal of Process Control | 2016
Horacio Leyva; Francisco A. Carrillo; G. Quiroz; R. Femat
) is also included. Finally, the problem of designing a marginally robust control function is addressed.
Acta Applicandae Mathematicae | 2010
Fernando Verduzco; Martín Eduardo Frías-Armenta; Horacio Leyva
Abstract Our main purpose in this paper is to address the problem of the global asymptotic stabilization of affine systems with control value sets given by polytopes U with 0 ∈ int U . An important polytope is the m -dimensional hyperbox U =[-r − 1 , r + 1 ]×…×[-r − m , r + m ], with -r ± m > 0. Working along the line of Artstein-Sontags control Lyapunov function (CLF) approach, we study the conditions that a feedback control of the form u ( x ) = ( u 1 ,…, u m ), with uj(x) = ϕj(x)w j (x), should satisfy in order to be admissible (continuous and taking its values in a polytope U ) and globally asymptotically stabilize a system, provided an appropriate CLF is known.