Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Horacio Soto is active.

Publication


Featured researches published by Horacio Soto.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma

Rameen Beroukhim; Gad Getz; Leia Nghiemphu; Jordi Barretina; Teli Hsueh; David Linhart; Igor Vivanco; Jeffrey C. Lee; Julie H. Huang; Sethu Alexander; Jinyan Du; Tweeny R. Kau; Roman K. Thomas; Kinjal Shah; Horacio Soto; Sven Perner; John R. Prensner; Ralph DeBiasi; Francesca Demichelis; Charlie Hatton; Mark A. Rubin; Levi A. Garraway; Stan F. Nelson; Linda M. Liau; Paul S. Mischel; T. Cloughesy; Matthew Meyerson; Todd Golub; Eric S. Lander; Ingo K. Mellinghoff

Comprehensive knowledge of the genomic alterations that underlie cancer is a critical foundation for diagnostics, prognostics, and targeted therapeutics. Systematic efforts to analyze cancer genomes are underway, but the analysis is hampered by the lack of a statistical framework to distinguish meaningful events from random background aberrations. Here we describe a systematic method, called Genomic Identification of Significant Targets in Cancer (GISTIC), designed for analyzing chromosomal aberrations in cancer. We use it to study chromosomal aberrations in 141 gliomas and compare the results with two prior studies. Traditional methods highlight hundreds of altered regions with little concordance between studies. The new approach reveals a highly concordant picture involving ≈35 significant events, including 16–18 broad events near chromosome-arm size and 16–21 focal events. Approximately half of these events correspond to known cancer-related genes, only some of which have been previously tied to glioma. We also show that superimposed broad and focal events may have different biological consequences. Specifically, gliomas with broad amplification of chromosome 7 have properties different from those with overlapping focalEGFR amplification: the broad events act in part through effects on MET and its ligand HGF and correlate with MET dependence in vitro. Our results support the feasibility and utility of systematic characterization of the cancer genome.


Clinical Cancer Research | 2011

Gene Expression Profile Correlates with T-Cell Infiltration and Relative Survival in Glioblastoma Patients Vaccinated with Dendritic Cell Immunotherapy

Robert M. Prins; Horacio Soto; Veerauo Konkankit; Sylvia K. Odesa; Ascia Eskin; William H. Yong; Stanley F. Nelson; Linda M. Liau

Purpose: To assess the feasibility, safety, and toxicity of autologous tumor lysate–pulsed dendritic cell (DC) vaccination and toll-like receptor (TLR) agonists in patients with newly diagnosed and recurrent glioblastoma. Clinical and immune responses were monitored and correlated with tumor gene expression profiles. Experimental Design: Twenty-three patients with glioblastoma (WHO grade IV) were enrolled in this dose-escalation study and received three biweekly injections of glioma lysate-pulsed DCs followed by booster vaccinations with either imiquimod or poly-ICLC adjuvant every 3 months until tumor progression. Gene expression profiling, immunohistochemistry, FACS, and cytokine bead arrays were performed on patient tumors and peripheral blood mononuclear cells. Results: DC vaccinations are safe and not associated with any dose-limiting toxicity. The median overall survival from the time of initial surgical diagnosis of glioblastoma was 31.4 months, with a 1-, 2-, and 3-year survival rate of 91%, 55%, and 47%, respectively. Patients whose tumors had mesenchymal gene expression signatures exhibited increased survival following DC vaccination compared with historic controls of the same genetic subtype. Tumor samples with a mesenchymal gene expression signature had a higher number of CD3+ and CD8+ tumor-infiltrating lymphocytes compared with glioblastomas of other gene expression signatures (P = 0.006). Conclusion: Autologous tumor lysate–pulsed DC vaccination in conjunction with TLR agonists is safe as adjuvant therapy in newly diagnosed and recurrent glioblastoma patients. Our results suggest that the mesenchymal gene expression profile may identify an immunogenic subgroup of glioblastoma that may be more responsive to immune-based therapies. Clin Cancer Res; 17(6); 1603–15. ©2010 AACR.


Science Signaling | 2009

EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy

Deliang Guo; Robert M. Prins; Julie Dang; Daisuke Kuga; Akio Iwanami; Horacio Soto; Kelly Y. Lin; Tiffany T. Huang; David Akhavan; M. Benjamin Hock; Shaojun Zhu; Ava A. Kofman; Steve J. Bensinger; William H. Yong; Harry V. Vinters; Steve Horvath; Andrew D. Watson; John G. Kuhn; H. Ian Robins; Minesh P. Mehta; Patrick Y. Wen; Lisa M. DeAngelis; Michael D. Prados; Ingo K. Mellinghoff; Timothy F. Cloughesy; Paul S. Mischel

Inhibitors of fatty acid signaling promote apoptosis in glioblastoma cells with highly active EGFR signaling. Inhibiting Lipid Metabolism to Combat Glioblastoma Glioblastoma, the most common form of brain cancer, is frequently lethal. Glioblastoma is often associated with increased signaling through the epidermal growth factor receptor (EGFR); however, therapeutic efforts focused on inhibiting EGFR signaling have been disappointing. Guo et al. analyzed tumor tissue removed from glioblastoma patients before and during treatment with the EGFR inhibitor lapatinib and found that EGFR signaling activated sterol regulatory element–binding protein 1 (SREBP-1), a key regulator of lipid metabolism, and increased the cellular concentrations of fatty acids. Intriguingly, inhibiting fatty acid synthesis promoted apoptosis in glioblastoma cells with substantial EGFR signaling both in vitro and when transplanted into immunodeficient mice, but not in glioblastoma cells with little EGFR signaling. Thus, inhibition of fatty acid synthesis may represent a new avenue toward treating glioblastomas driven by EGFR signaling. Glioblastoma, the most common malignant brain tumor, is among the most lethal and difficult cancers to treat. Although epidermal growth factor receptor (EGFR) mutations are frequent in glioblastoma, their clinical relevance is poorly understood. Studies of tumors from patients treated with the EGFR inhibitor lapatinib revealed that EGFR induces the cleavage and nuclear translocation of the master transcriptional regulator of fatty acid synthesis, sterol regulatory element–binding protein 1 (SREBP-1). This response was mediated by Akt; however, clinical data from rapamycin-treated patients showed that SREBP-1 activation was independent of the mammalian target of rapamycin complex 1, possibly explaining rapamycin’s poor efficacy in the treatment of such tumors. Glioblastomas without constitutively active EGFR signaling were resistant to inhibition of fatty acid synthesis, whereas introduction of a constitutively active mutant form of EGFR, EGFRvIII, sensitized tumor xenografts in mice to cell death, which was augmented by the hydroxymethylglutaryl coenzyme A reductase inhibitor atorvastatin. These results identify a previously undescribed EGFR-mediated prosurvival metabolic pathway and suggest new therapeutic approaches to treating EGFR-activated glioblastomas.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis

Deliang Guo; Isabel Hildebrandt; Robert M. Prins; Horacio Soto; Mary M. Mazzotta; Julie Dang; Johannes Czernin; John Y.-J. Shyy; Andrew D. Watson; Michael E. Phelps; Caius G. Radu; Timothy F. Cloughesy; Paul S. Mischel

The EGFR/PI3K/Akt/mTOR signaling pathway is activated in many cancers including glioblastoma, yet mTOR inhibitors have largely failed to show efficacy in the clinic. Rapamycin promotes feedback activation of Akt in some patients, potentially underlying clinical resistance and raising the need for alternative approaches to block mTOR signaling. AMPK is a metabolic checkpoint that integrates growth factor signaling with cellular metabolism, in part by negatively regulating mTOR. We used pharmacological and genetic approaches to determine whether AMPK activation could block glioblastoma growth and cellular metabolism, and we examined the contribution of EGFR signaling in determining response in vitro and in vivo. The AMPK-agonist AICAR, and activated AMPK adenovirus, inhibited mTOR signaling and blocked the growth of glioblastoma cells expressing the activated EGFR mutant, EGFRvIII. Across a spectrum of EGFR-activated cancer cell lines, AICAR was more effective than rapamycin at blocking tumor cell proliferation, despite less efficient inhibition of mTORC1 signaling. Unexpectedly, addition of the metabolic products of cholesterol and fatty acid synthesis rescued the growth inhibitory effect of AICAR, whereas inhibition of these lipogenic enzymes mimicked AMPK activation, thus demonstrating that AMPK blocked tumor cell proliferation primarily through inhibition of cholesterol and fatty acid synthesis. Most importantly, AICAR treatment in mice significantly inhibited the growth and glycolysis (as measured by 18fluoro-2-deoxyglucose microPET) of glioblastoma xenografts engineered to express EGFRvIII, but not their parental counterparts. These results suggest a mechanism by which AICAR inhibits the proliferation of EGFRvIII expressing glioblastomas and point toward a potential therapeutic strategy for targeting EGFR-activated cancers.


Molecular therapy. Nucleic acids | 2013

BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles

Walter W. Chen; Leonora Balaj; Linda M. Liau; Michael L. Samuels; Steve Kotsopoulos; Casey A. Maguire; Lori LoGuidice; Horacio Soto; Matthew C. Garrett; Lin Dan Zhu; Sarada Sivaraman; Clark Chen; Eric T. Wong; Bob S. Carter; Fred H. Hochberg; Xandra O. Breakefield; Johan Skog

Development of biofluid-based molecular diagnostic tests for cancer is an important step towards tumor characterization and real-time monitoring in a minimally invasive fashion. Extracellular vesicles (EVs) are released from tumor cells into body fluids and can provide a powerful platform for tumor biomarkers because they carry tumor proteins and nucleic acids. Detecting rare point mutations in the background of wild-type sequences in biofluids such as blood and cerebrospinal fluid (CSF) remains a major challenge. Techniques such as BEAMing (beads, emulsion, amplification, magnetics) PCR and droplet digital PCR (ddPCR) are substantially more sensitive than many other assays for mutant sequence detection. Here, we describe a novel approach that combines biofluid EV RNA and BEAMing RT-PCR (EV-BEAMing), as well droplet digital PCR to interrogate mutations from glioma tumors. EVs from CSF of patients with glioma were shown to contain mutant IDH1 transcripts, and we were able to reliably detect and quantify mutant and wild-type IDH1 RNA transcripts in CSF of patients with gliomas. EV-BEAMing and EV-ddPCR represent a valuable new strategy for cancer diagnostics, which can be applied to a variety of biofluids and neoplasms.


Cancer Research | 2013

An Essential Requirement for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity

Kevin J. Williams; Joseph P. Argus; Yue Zhu; Moses Q. Wilks; Beth N. Marbois; Autumn G. York; Yoko Kidani; Alexandra L. Pourzia; David Akhavan; Dominique N. Lisiero; Evangelia Komisopoulou; Amy H. Henkin; Horacio Soto; Brian T. Chamberlain; Laurent Vergnes; Michael E. Jung; Jorge Z. Torres; Linda M. Liau; Heather R. Christofk; Robert M. Prins; Paul S. Mischel; Karen Reue; Thomas G. Graeber; Steven J. Bensinger

The sterol regulatory element-binding proteins (SREBP) are key transcriptional regulators of lipid metabolism and cellular growth. It has been proposed that SREBP signaling regulates cellular growth through its ability to drive lipid biosynthesis. Unexpectedly, we find that loss of SREBP activity inhibits cancer cell growth and viability by uncoupling fatty acid synthesis from desaturation. Integrated lipid profiling and metabolic flux analysis revealed that cancer cells with attenuated SREBP activity maintain long-chain saturated fatty acid synthesis, while losing fatty acid desaturation capacity. We traced this defect to the uncoupling of fatty acid synthase activity from stearoyl-CoA desaturase 1 (SCD1)-mediated desaturation. This deficiency in desaturation drives an imbalance between the saturated and monounsaturated fatty acid pools resulting in severe lipotoxicity. Importantly, replenishing the monounsaturated fatty acid pool restored growth to SREBP-inhibited cells. These studies highlight the importance of fatty acid desaturation in cancer growth and provide a novel mechanistic explanation for the role of SREBPs in cancer metabolism.


Journal of Immunotherapy | 2013

Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients

Robert M. Prins; Xiaoyan Wang; Horacio Soto; Emma Young; Dominique N. Lisiero; Brendan M. Fong; Richard Everson; William H. Yong; Albert Lai; Gang Li; Timothy F. Cloughesy; Linda M. Liau

Dendritic cell (DC) vaccination is emerging as a promising therapeutic option for malignant glioma patients. However, the optimal antigen formulation for loading these cells has yet to be established. The objective of this study was to compare the safety, feasibility, and immune responses of malignant glioma patients on 2 different DC vaccination protocols. Twenty-eight patients were treated with autologous tumor lysate (ATL)-pulsed DC vaccination, whereas 6 patients were treated with glioma-associated antigen (GAA) peptide-pulsed DCs. Safety, toxicity, feasibility, and correlative immune monitoring assay results were compared between patients on each trial. Because of HLA subtype restrictions on the GAA-DC trial, 6/15 screened patients were eligible for treatment, whereas 28/32 patients passed eligibility screening for the ATL-DC trial. Elevated frequencies of activated natural killer cells were observed in the peripheral blood from GAA-DC patients compared with the ATL-DC patients. In addition, a significant correlation was observed between decreased regulatory T lymphocyte (Treg) ratios (postvaccination/prevaccination) and overall survival (P=0.004) in patients on both trials. In fact, Treg ratios were independently prognostic for overall survival in these patients, whereas tumor pathology was not in multivariate analyses. In conclusion, these results suggest that ATL-DC vaccination is associated with wider patient eligibility compared with GAA-DC vaccination. Decreased postvaccination/prevaccination Treg ratios and decreased frequencies of activated natural killer cells were associated with prolonged survival in patients from both trials, suggesting that these lymphocyte subsets may be relevant immune monitoring endpoints for immunotherapy protocols in malignant glioma patients.


Cancer Immunology, Immunotherapy | 2008

Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain.

Robert M. Prins; Chengyi J. Shu; Caius G. Radu; Dan D. Vo; Haumith Khan-Farooqi; Horacio Soto; Meng Yin Yang; Muh Shi Lin; Stephanie M. Shelly; Owen N. Witte; Antoni Ribas; Linda M. Liau

It is commonly believed that T cells have difficulty reaching tumors located in the brain due to the presumed “immune privilege” of the central nervous system (CNS). Therefore, we studied the biodistribution and anti-tumor activity of adoptively transferred T cells specific for an endogenous tumor-associated antigen (TAA), gp100, expressed by tumors implanted in the brain. Mice with pre-established intracranial (i.c.) tumors underwent total body irradiation (TBI) to induce transient lymphopenia, followed by the adoptive transfer of gp10025–33-specific CD8+ T cells (Pmel-1). Pmel-1 cells were transduced to express the bioluminescent imaging (BLI) gene luciferase. Following adoptive transfer, recipient mice were vaccinated with hgp10025–33 peptide-pulsed dendritic cells (hgp10025–33/DC) and systemic interleukin 2 (IL-2). This treatment regimen resulted in significant reduction in tumor size and extended survival. Imaging of T cell trafficking demonstrated early accumulation of transduced T cells in lymph nodes draining the hgp10025–33/DC vaccination sites, the spleen and the cervical lymph nodes draining the CNS tumor. Subsequently, transduced T cells accumulated in the bone marrow and brain tumor. BLI could also detect significant differences in the expansion of gp100-specific CD8+ T cells in the treatment group compared with mice that did not receive either DC vaccination or IL-2. These differences in BLI correlated with the differences seen both in survival and tumor infiltrating lymphocytes (TIL). These studies demonstrate that peripheral tolerance to endogenous TAA can be overcome to treat tumors in the brain and suggest a novel trafficking paradigm for the homing of tumor-specific T cells that target CNS tumors.


Journal of Immunology | 2006

NK and CD4 Cells Collaborate to Protect against Melanoma Tumor Formation in the Brain

Robert M. Prins; Dan D. Vo; Haumith Khan-Farooqi; Meng-Yin Yang; Horacio Soto; James S. Economou; Linda M. Liau; Antoni Ribas

NK cells represent a potent immune effector cell type that have the ability to recognize and lyse tumors. However, the existence and function of NK cells in the traditionally “immune-privileged” CNS is controversial. Furthermore, the cellular interactions involved in NK cell anti-CNS tumor immunity are even less well understood. We administered non-Ag-loaded, immature dendritic cells (DC) to CD8α knockout (KO) mice and studied their anti-CNS tumor immune responses. DC administration induced dramatic antitumor immune protection in CD8α KO mice that were challenged with B16 melanoma both s.c. and in the brain. The CNS antitumor immunity was dependent on both CD4+ T cells and NK cells. Administration of non-Ag-loaded, immature DC resulted in significant CD4+ T cell and NK cell expansion in the draining lymph nodes at 6 days postvaccination, which persisted for 2 wk. Finally, DC administration in CD8α KO mice was associated with robust infiltration of CD4+ T cells and NK cells into the brain tumor parenchyma. These results represent the first demonstration of a potent innate antitumor immune response against CNS tumors in the absence of toxicity. Thus, non-Ag-loaded, immature DC administration, in the setting of CD8 genetically deficient mice, can induce dramatic antitumor immune responses within the CNS that surpass the effects observed in wild-type mice. Our results suggest that a better understanding of the cross-talk between DC and innate immune cells may provide improved methods to vaccinate patients with tumors located both systemically and within the CNS.


Neuro-oncology | 2012

Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation

Jelena Lazovic; Horacio Soto; David Piccioni; Jerry R. Lou; Sichen Li; Leili Mirsadraei; William H. Yong; Robert M. Prins; Linda M. Liau; Benjamin M. Ellingson; Timothy F. Cloughesy; Albert Lai; Whitney B. Pope

The arginine 132 (R132) mutation of isocitrate dehydrogenase -1 (IDH1(R132)) results in production of 2-hydroxyglutarate (2-HG) and is associated with a better prognosis compared with wild-type (WT) in glioma patients. The majority of lower-grade gliomas express IDH1(R132), whereas this mutation is rare in grade IV gliomas. The aim of this study was to noninvasively investigate metabolic and physiologic changes associated with the IDH1 mutation in a mouse glioma model. Using a 7T magnet, we compared MRI and proton magnetic resonance spectroscopy (MRS) in U87 glioma cells overexpressing either the mutated IDH1(R132) or IDH1 wild-type (IDH1(WT)) gene in a mouse flank xenograft model. Flank tumors overexpressing IDH1(R132) showed a resonance at 2.25 ppm corresponding to the 2-HG peak described for human IDH1(R132) gliomas. WT tumors lacked this peak in all cases. IDH1 mutant tumors demonstrated significantly reduced glutamate by in vivo MRS. There were no significant differences in T(2), apparent diffusion coefficient (ADC), or perfusion values between the mutant and IDH1(WT) tumors. The IDH1(R132) mutation results in 2-HG resonance at 2.25 ppm and a reduction of glutamate levels as determined by MRS. Our results establish a model system where 2-HG can be monitored noninvasively, which should be helpful in validating 2-HG levels as a prognostic and/or predictive biomarker in glioma.

Collaboration


Dive into the Horacio Soto's collaboration.

Top Co-Authors

Avatar

Linda M. Liau

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joey Orpilla

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Namjo Shin

University of California

View shared research outputs
Top Co-Authors

Avatar

Albert Lai

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge