Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Horim Lee is active.

Publication


Featured researches published by Horim Lee.


The Plant Cell | 2007

Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical Role in Light Regulation of Development

Jungeun Lee; Kun He; Viktor Stolc; Horim Lee; Pablo Figueroa; Ying Gao; Waraporn Tongprasit; Hongyu Zhao; Ilha Lee; Xing Wang Deng

The transcription factor LONG HYPOCOTYL5 (HY5) acts downstream of multiple families of the photoreceptors and promotes photomorphogenesis. Although it is well accepted that HY5 acts to regulate target gene expression, in vivo binding of HY5 to any of its target gene promoters has yet to be demonstrated. Here, we used a chromatin immunoprecipitation procedure to verify suspected in vivo HY5 binding sites. We demonstrated that in vivo association of HY5 with promoter targets is not altered under distinct light qualities or during light-to-dark transition. Coupled with DNA chip hybridization using a high-density 60-nucleotide oligomer microarray that contains one probe for every 500 nucleotides over the entire Arabidopsis thaliana genome, we mapped genome-wide in vivo HY5 binding sites. This analysis showed that HY5 binds preferentially to promoter regions in vivo and revealed >3000 chromosomal sites as putative HY5 binding targets. HY5 binding targets tend to be enriched in the early light-responsive genes and transcription factor genes. Our data thus support a model in which HY5 is a high hierarchical regulator of the transcriptional cascades for photomorphogenesis.


The Plant Cell | 2009

Crosstalk between Cold Response and Flowering in Arabidopsis Is Mediated through the Flowering-Time Gene SOC1 and Its Upstream Negative Regulator FLC

Eunjoo Seo; Horim Lee; Jin Jeon; Hanna Park; Jungmook Kim; Yoo-Sun Noh; Ilha Lee

The appropriate timing of flowering is pivotal for reproductive success in plants; thus, it is not surprising that flowering is regulated by complex genetic networks that are fine-tuned by endogenous signals and environmental cues. The Arabidopsis thaliana flowering-time gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) encodes a MADS box transcription factor and is one of the key floral activators integrating multiple floral inductive pathways, namely, long-day, vernalization, autonomous, and gibberellin-dependent pathways. To elucidate the downstream targets of SOC1, microarray analyses were performed. The analysis revealed that the soc1-2 knockout mutant has increased, and an SOC1 overexpression line has decreased, expression of cold response genes such as CBFs (for CRT/DRE binding factors) and COR (for cold regulated) genes, suggesting that SOC1 negatively regulates the expression of the cold response genes. By contrast, overexpression of cold-inducible CBFs caused late flowering through increased expression of FLOWERING LOCUS C (FLC), an upstream negative regulator of SOC1. Our results demonstrate the presence of a feedback loop between cold response and flowering-time regulation; this loop delays flowering through the increase of FLC when a cold spell is transient as in fall or early spring but suppresses the cold response when floral induction occurs through the repression of cold-inducible genes by SOC1.


The Plant Cell | 2005

SUPPRESSOR OF FRIGIDA3 Encodes a Nuclear ACTIN-RELATED PROTEIN6 Required for Floral Repression in Arabidopsis

Kyuha Choi; Sanghee Kim; Sang Yeol Kim; Min Soo Kim; Youbong Hyun; Horim Lee; Sunghwa Choe; Sang-Gu Kim; Scott D. Michaels; Ilha Lee

Flowering traits in winter annual Arabidopsis thaliana are conferred mainly by two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC acts as a flowering repressor and is regulated by multiple flowering pathways. We isolated an early-flowering mutant, suppressor of FRIGIDA3 (suf3), which also shows leaf serration, weak apical dominance, and infrequent conversion of the inflorescence shoot to a terminal flower. The suf3 mutation caused a decrease in the transcript level of FLC in both a FRI-containing line and autonomous pathway mutants. However, suf3 showed only a partial reduction of FLC transcript level, although it largely suppressed the late-flowering phenotype. In addition, the suf3 mutation caused acceleration of flowering in both 35S-FLC and a flc null mutant, indicating that SUF3 regulates additional factor(s) for the repression of flowering. SUF3 is highly expressed in the shoot apex, but the expression is not regulated by FRI, autonomous pathway genes, or vernalization. SUF3 encodes the nuclear ACTIN-RELATED PROTEIN6 (ARP6), the homolog of which in yeast is a component of an ATP-dependent chromatin-remodeling SWR1 complex. Our analyses showed that SUF3 regulates FLC expression independent of vernalization, FRI, and an autonomous pathway gene, all of which affect the histone modification of FLC chromatin. Subcellular localization using a green fluorescent protein fusion showed that Arabidopsis ARP6 is located at distinct regions of the nuclear periphery.


ACS Applied Materials & Interfaces | 2011

Electrospray Preparation of Hierarchically-structured Mesoporous TiO2 Spheres for Use in Highly Efficient Dye-Sensitized Solar Cells

Daesub Hwang; Horim Lee; Sung-Yeon Jang; Seong Mu Jo; Dongho Kim; Yongsok Seo; Dong Young Kim

We report a simple method to prepare hierarchically structured TiO(2) spheres (HS-TiO(2)), using an electrostatic spray technique, that are utilized for photoelectrodes of highly efficient dye-sensitized solar cells (DSSCs). This method has an advantage to remove the synthesis steps in conventional sol-gel method to form nano-sized spheres of TiO(2) nanoclusters. The fine dispersion of commercially available nanocrystalline TiO(2) particles (P25, Degussa) in EtOH without surfactants and additives is electro-sprayed directly onto a fluorine-dopoed tin-oxide (FTO) substrate for DSSC photoelectrodes. The DSSCs of HS-TiO(2) photoelectrodes show high energy conversion efficiency over 10% under illumination of light at 100 mW cm(-2), AM1.5 global. It is concluded from frequency-dependent measurements that the faster electron diffusion coefficient and longer lifetime of HS-TiO(2) than those in nonstructured TiO(2) contribute to the enhanced efficiency in DSSCs.


ACS Applied Materials & Interfaces | 2012

Low-Temperature Fabrication of TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells Using an Electrospray Process

Horim Lee; Daesub Hwang; Seong Mu Jo; Dongho Kim; Yongsok Seo; Dong Young Kim

Hierarchically structured TiO2 (HS-TiO2) was prepared on a flexible ITO-PEN (polyethylene naphthalate) substrate via electrospray deposition using a commercially available TiO2 nanocrystalline powder in order to fabricate flexible DSSCs under low-temperature (<150 °C) conditions. The cell efficiency increased when using flexible ITO-PEN substrates post-treated by either a mechanical compression treatment or a chemical sintering treatment using titanium n-tetrabutoxide (TTB). The mechanical compression treatment reduced the surface area and porosity of the HS-TiO2; however, this treatment improved the interparticle connectivity and physical adhesion between the HS-TiO2 and ITO-PEN substrate, which increased the photocurrent density of the as-pressed HS-TiO2 cells. The electron diffusion coefficients of the as-pressed HS-TiO2 improved upon compression treatment, whereas the recombination lifetimes remained unchanged. An additional chemical sintering post-treatment involving TTB was tested for its effects on DSSC efficiency. The freshly coated TiO2 submitted to TTB hydrolysis in water at 100 °C yielded an anatase phase. TTB treatment of the HS-TiO2 cell after compression treatment yielded faster electron diffusion, providing an efficiency of 5.57% under 100 mW cm(-2), AM 1.5 global illumination.


Advanced Materials | 2014

Resonant Multiple Light Scattering for Enhanced Photon Harvesting in Dye-Sensitized Solar Cells

Jihun Kim; Horim Lee; Dong Young Kim; Yongsok Seo

A new benchmark for DSSC performances is set using a novel dye and fabricating a very efficient resonant light-scattering device with a high photocurrent and good stability.


Scientific Reports | 2015

Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells.

Daesub Hwang; Jun-Su Jin; Horim Lee; Haejin Kim; Heejae Chung; Dong Young Kim; Sung-Yeon Jang; Dongho Kim

We developed a unique strategy for fabricating hierarchically structured (nanoparticles-in-beads) Zn2SnO4 beads (ZTO-Bs), which were then used to produce ternary metal oxide-based dye-sensitized solar cells (DSSCs). DSSCs were fabricated using the ZTO-Bs as the photoelectrodes and highly absorbable organic dyes as the sensitizers. The DSSCs based on the ZTO-Bs and the organic dyes (SJ-E1 and SJ-ET1) exhibited the highest performance ever reported for DSSCs with ternary metal oxide-based photoelectrodes. The optimized DSSCs exhibited a power conversion efficiency of 6.3% (VOC of 0.71 V, JSC of 12.2 mA cm−2, FF of 0.72), which was much higher than that for DSSCs with conventional ZTO-NPs-based photoelectrodes or those based on the popular ruthenium-based dye, N719. The unique morphology of the ZTO-Bs allowed for improvements in dye absorption, light scattering, electrolyte penetration, and the charge recombination lifetime, while the organic dyes resulted in high molar absorbability.


Scientific Reports | 2013

CORRIGENDUM: Ion concentration polarization-based continuous separation device using electrical repulsion in the depletion region

Hyungkook Jeon; Horim Lee; Kwan Hyoung Kang; Geunbae Lim

We proposed a novel separation method, which is the first report using ion concentration polarization (ICP) to separate particles continuously. We analyzed the electrical forces that cause the repulsion of particles in the depletion region formed by ICP. Using the electrical repulsion, micro- and nano-sized particles were separated based on their electrophoretic mobilities. Because the separation of particles was performed using a strong electric field in the depletion region without the use of internal electrodes, it offers the advantages of simple, low-cost device fabrication and bubble-free operation compared with conventional continuous electrophoretic separation methods, such as miniaturizing free-flow electrophoresis (μ-FFE). This separation device is expected to be a useful tool for separating various biochemical samples, including cells, proteins, DNAs and even ions.


Journal of Materials Chemistry | 2013

Enhanced charge collection efficiency of dye-sensitized solar cells based on size-tunable hierarchically structured TiO2 beads

Daesub Hwang; Horim Lee; Yongsok Seo; Dongho Kim; Seong Mu Jo; Dong Young Kim

Hierarchically structured mesoporous TiO2 beads (HS-TBs), which are used as photoelectrodes in highly efficient dye-sensitized solar cells (DSCs), were prepared by an electrostatic spray (e-spray) technique. To prepare different sized HS-TBs, the electric field and the concentration of TiO2 particles were carefully controlled, because they are critical factors in preparing size-controlled TiO2 beads. Four different HS-TBs were formulated with average diameters of 250, 450, 700, and 1200 nm as high-quality photoelectrodes for use in DSCs. In this study, we found that the zero-dimensional HS-TBs were the most promising photoelectrode for DSCs due to enhanced charge collection efficiency and better penetration of electrolytes through relatively large pores among the HS-TBs. The HS-TBs were characterized by intensity modulated photocurrent spectroscopy (IMPS), the scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) method, Barrett–Joyner–Halenda (BJH) method, and electrochemical analysis. The conversion efficiency of HS-TB photoelectrodes improved with increasing bead size due to the enhanced electron transport through electrodes. The present HS-TB cells exhibit a noticeable improvement in the overall efficiency: maximum 9.54% (1200 nm) versus 5.83% for the reference cell made of a TiO2 nanocrystalline film.


Journal of Plant Biology | 2007

Identification and characterization of small RNAs from vernalizedArabidopsis thaliana

Mijin Oh; Horim Lee; Young-Kook Kim; Jin-Wu Nam; Je-Keun Rhee; Byoung-Tak Zhang; V. Narry Kim; Ilha Lee

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two major classes of small non-coding RNAs with important roles in the regulation of gene expression, such as mRNA degradation and translational repression, heterochromatin formation, genome defense against transposons and viruses in eukaryotes. MiRNA- and siRNA-directed processes have emerged as a regulatory mechanism for growth and development in both animals and plants. To identify small RNAs that might be involved in vernalization, a process accelerating flowering brought on by a long period of cold, we generated a library of small RNAs from Arabidopsis that had been subject to vernalization. From the analysis of the library, 277 small RNAs were identified. They were distributed throughout all the five chromosomes. While the vast majority of small RNA genes locate on intergenic regions, others locate on repeat-rich regions, centromeric regions, transposon-related genes, and protein-coding genes. Five of them were mapped to convergent overlapping gene pairs. Two-hundred and forty of them were novel endogenous small RNAs that have not been cloned yet from plants grown under normal conditions and other environmental stresses. Seven putative miRNAs were up- or down-regulated by vernalization. In conclusion, many small RNAs were identified from vernalized Arabidopsis and some of these identified small RNAs may play roles in plant responses to vernalization.

Collaboration


Dive into the Horim Lee's collaboration.

Top Co-Authors

Avatar

Yongsok Seo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Dong Young Kim

University College London

View shared research outputs
Top Co-Authors

Avatar

Ilha Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jihun Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Daesub Hwang

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seong Mu Jo

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sang-Gu Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geunbae Lim

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge