Horst Wenck
Beiersdorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Horst Wenck.
PLOS Genetics | 2010
Elke Grönniger; Barbara Weber; Oliver Heil; Nils Peters; Franz Stäb; Horst Wenck; Bernhard Korn; Marc Winnefeld; Frank Lyko
Epigenetic changes are widely considered to play an important role in aging, but experimental evidence to support this hypothesis has been scarce. We have used array-based analysis to determine genome-scale DNA methylation patterns from human skin samples and to investigate the effects of aging, chronic sun exposure, and tissue variation. Our results reveal a high degree of tissue specificity in the methylation patterns and also showed very little interindividual variation within tissues. Data stratification by age revealed that DNA from older individuals was characterized by a specific hypermethylation pattern affecting less than 1% of the markers analyzed. Interestingly, stratification by sun exposure produced a fundamentally different pattern with a significant trend towards hypomethylation. Our results thus identify defined age-related DNA methylation changes and suggest that these alterations might contribute to the phenotypic changes associated with skin aging.
Photochemistry and Photobiology | 2004
Kirstin M. Südel; Kirsten Venzke; Heiko Mielke; Ute Breitenbach; Claudia Mundt; Sören Jaspers; Urte Koop; Kirsten Sauermann; Elke KnuBmann-Hartig; I Moll; G. Gercken; Antony R. Young; Franz Stäb; Horst Wenck; Stefan Gallinat
Abstract Biochemical and structural changes of the dermal connective tissue substantially contribute to the phenotype of aging skin. To study connective tissue metabolism with respect to ultraviolet (UV) exposure, we performed an in vitro (human dermal fibroblasts) and an in vivo complementary DNA array study in combination with protein analysis in young and old volunteers. Several genes of the collagen metabolism such as Collagen I, III and VI as well as heat shock protein 47 and matrix metalloproteinase-1 are expressed differentially, indicating UV-mediated effects on collagen expression, processing and degradation. In particular, Collagen I is time and age dependently reduced after a single UV exposure in human skin in vivo. Moreover, older subjects display a lower baseline level and a shorter UV-mediated increase in hyaluronan (HA) levels. To counteract these age-dependent changes, cultured fibroblasts were treated with a specific soy extract. This treatment resulted in increased collagen and HA synthesis. In a placebo-controlled in vivo study, topical application of an isoflavone-containing emulsion significantly enhanced the number of dermal papillae per area after 2 weeks. Because the flattening of the dermal–epidermal junction is the most reproducible structural change in aged skin, this soy extract appears to rejuvenate the structure of mature skin.
Journal of Biological Chemistry | 2007
Thomas Kueper; Tilman Grune; Stefanie Prahl; Holger Lenz; Vivienne Welge; Tanja Biernoth; Yvonne Vogt; Gesa Muhr; Astrid Gaemlich; Tobias Jung; Gerrit Boemke; Hans-Peter Elsässer; Klaus-Peter Wittern; Horst Wenck; Franz Stäb; Thomas Blatt
Until now, the glycation reaction was considered to be a nonspecific reaction between reducing sugars and amino groups of random proteins. We were able to identify the intermediate filament vimentin as the major target for the AGE modification Nϵ-(carboxymethyl)lysine (CML) in primary human fibroblasts. This glycation of vimentin is neither based on a slow turnover of this protein nor on an extremely high intracellular expression level, but remarkably it is based on structural properties of this protein. Glycation of vimentin was predominantly detected at lysine residues located at the linker regions using nanoLC-ESI-MS/MS. This modification results in a rigorous redistribution of vimentin into a perinuclear aggregate, which is accompanied by the loss of contractile capacity of human skin fibroblasts. CML-induced rearrangement of vimentin was identified as an aggresome. This is the first evidence that CML-vimentin represents a damaged protein inside the aggresome, linking the glycation reaction directly to aggresome formation. Strikingly, we were able to prove that the accumulation of modified vimentin can be found in skin fibroblasts of elderly donors in vivo, bringing AGE modifications in human tissues such as skin into strong relationship with loss of organ contractile functions.
Archives of Dermatological Research | 2006
Ludger Kolbe; Jeannine Immeyer; Jan Batzer; Ursula Wensorra; Karen Torn Dieck; Claudia Mundt; Rainer Wolber; Franz Stäb; Uwe Dr. Schönrock; Roger I. Ceilley; Horst Wenck
Licochalcone A (LicA), a major phenolic constituent of the licorice species Glycyrrhiza inflata, has recently been reported to have anti-inflammatory as well as anti-microbial effects. These anti-inflammatory properties might be exploited for topical applications of LicA. We conducted prospective randomized vehicle-controlled clinical trials to assess the anti-irritative efficacy of cosmetic formulations containing LicA in a post-shaving skin irritation model and on UV-induced erythema formation. The clinical trials were accompanied by a series of in vitro experiments to characterize anti-inflammatory properties of LicA on several dermatologically relevant cell types. Topical LicA causes a highly significant reduction in erythema relative to the vehicle control in both the shave- and UV-induced erythema tests, demonstrating the anti-irritative properties of LicA. Furthermore, LicA is a potent inhibitor of pro-inflammatory in vitro responses, including N-formyl-MET-LEU-PHE (fMLP)- or zymosan-induced oxidative burst of granulocytes, UVB-induced PGE2 release by keratinocytes, lipopolysaccharide (LPS)-induced PGE2 release by adult dermal fibroblasts, fMLP-induced LTB4 release by granulocytes, and LPS-induced IL-6/TNF-α secretion by monocyte-derived dendritic cells. The reported data suggest therapeutic skin care benefits from LicA when applied to sensitive or irritated skin.
Skin Pharmacology and Physiology | 2004
Thomas Raschke; Urte Koop; H.-J. Düsing; Alexander Filbry; Kirsten Sauermann; Sören Jaspers; Horst Wenck; Klaus-Peter Wittern
We present here a new cosmetic formula system containing 3% ascorbic acid based on an optimized oil-in-water (O/W) emulsion. This formulation demonstrated a good long-term stability of the active ingredient and also of the emulsion itself. It could be deduced from in vitro release studies that this O/W emulsion enabled a better release of the hydrophilic active agent than an alternative W/O emulsion. By measuring the ultraweak photon emission, which is a well-established parameter for the oxidative stress in the skin, the high in vivo antioxidant capacity of 3% ascorbic acid was demonstrated after 1 week of product application. This placebo-controlled study also proved that ascorbic acid in an O/W cream reduced oxidative stress in human skin significantly better than the derivative sodium ascorbyl-2-phosphate, a more stable vitamin C replacement commonly used in cosmetic formulations. With increasing age, the number of papillae in the epidermal-dermal junction zone in human skin are reduced. This implies a possible consequence of reduced mechanical resistance of the skin and impaired supply of the epidermis with nutrients. In a 1-month placebo-controlled study on 25 human volunteers, a significant increase in the number of dermal papillae after application of the 3% ascorbic acid cream was demonstrated, using a confocal laser scanning microscope. Fine lines and wrinkles are a characteristic sign of aged and especially photo-aged skin. Application of 3% ascorbic acid in a 12-week placebo-controlled usage study indicated a significant reduction of facial wrinkles. Altogether, 3% ascorbic acid in a cosmetic O/W emulsion has been shown to be appropriately stable and to enable a good release of the active agent in vitro as a precondition for a high efficacy in vivo. Application in vivo resulted in a significant reduction of oxidative stress in the skin, an improvement of the epidermal-dermal microstructure and a reduction of fine lines and wrinkles in aged skin. These results were received within a relatively short period of time of product application.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Florian Spörl; Sandra Korge; Karsten Jürchott; Minetta Wunderskirchner; Katja Schellenberg; Sven Heins; Aljona Specht; Claudia Stoll; Roman Klemz; Bert Maier; Horst Wenck; Annika Schrader; Dieter Kunz; Thomas Blatt; Achim Kramer
Circadian clocks govern a wide range of cellular and physiological functions in various organisms. Recent evidence suggests distinct functions of local clocks in peripheral mammalian tissues such as immune responses and cell cycle control. However, studying circadian action in peripheral tissues has been limited so far to mouse models, leaving the implication for human systems widely elusive. In particular, circadian rhythms in human skin, which is naturally exposed to strong daytime-dependent changes in the environment, have not been investigated to date on a molecular level. Here, we present a comprehensive analysis of circadian gene expression in human epidermis. Whole-genome microarray analysis of suction-blister epidermis obtained throughout the day revealed a functional circadian clock in epidermal keratinocytes with hundreds of transcripts regulated in a daytime-dependent manner. Among those, we identified a circadian transcription factor, Krüppel-like factor 9 (Klf9), that is substantially up-regulated in a cortisol and differentiation-state-dependent manner. Gain- and loss-of-function experiments showed strong antiproliferative effects of Klf9. Putative Klf9 target genes include proliferation/differentiation markers that also show circadian expression in vivo, suggesting that Klf9 affects keratinocyte proliferation/differentiation by controlling the expression of target genes in a daytime-dependent manner.
Molecular Cell | 2015
Andreas Kuehne; Hila Emmert; Joern Soehle; Marc Winnefeld; Frank Fischer; Horst Wenck; Stefan Gallinat; Lara Terstegen; Ralph Lucius; Janosch Hildebrand; Nicola Zamboni
Integrity of human skin is endangered by exposure to UV irradiation and chemical stressors, which can provoke a toxic production of reactive oxygen species (ROS) and oxidative damage. Since oxidation of proteins and metabolites occurs virtually instantaneously, immediate cellular countermeasures are pivotal to mitigate the negative implications of acute oxidative stress. We investigated the short-term metabolic response in human skin fibroblasts and keratinocytes to H2O2 and UV exposure. In time-resolved metabolomics experiments, we observed that within seconds after stress induction, glucose catabolism is routed to the oxidative pentose phosphate pathway (PPP) and nucleotide synthesis independent of previously postulated blocks in glycolysis (i.e., of GAPDH or PKM2). Through ultra-short (13)C labeling experiments, we provide evidence for multiple cycling of carbon backbones in the oxidative PPP, potentially maximizing NADPH reduction. The identified metabolic rerouting in oxidative and non-oxidative PPP has important physiological roles in stabilization of the redox balance and ROS clearance.
Journal of Investigative Dermatology | 2013
Dennis Roggenkamp; Sarah Köpnick; Franz Stäb; Horst Wenck; Martin Schmelz; Gitta Neufang
Atopic eczema is a chronic inflammatory skin disease characterized by cutaneous nerve fiber sprouting and epidermal hyperplasia, pointing to an involvement of the peripheral nervous system in cutaneous homeostasis. However, the interaction of sensory neurons and skin cells is poorly understood. Using an innervated skin model, we investigated the influence of sensory neurons on epidermal morphogenesis. Neurons induced the proliferation of keratinocytes, resulting in an increase in the epidermal thickness. Inhibition of calcitonin gene-related peptide (CGRP), but not substance P (SP) signaling, reversed this effect. Human CGRP enhanced keratinocyte proliferation and epidermal thickness in skin models, demonstrating a key role of CGRP in modulating epidermal morphogenesis, whereas SP had only a moderate effect. Innervated skin models composed of atopic skin cells showed increased neurite outgrowth, accompanied by elevated CGRP release. As atopic keratinocytes were sensitized to CGRP owing to higher expression levels of the CGRP receptor components, receptor activity-modifying protein 1 (RAMP1) and receptor component protein (RCP), atopic innervated skin models displayed a thicker epidermis than did healthy controls. We conclude that neural CGRP controls local keratinocyte growth. Our results show that the crosstalk of the cutaneous peripheral nervous system and skin cells significantly influences epidermal morphogenesis and homeostasis in healthy and atopic skin.
Nutrition & Metabolism | 2009
Jörn Söhle; Anja Knott; Ursula Holtzmann; Ralf Siegner; Elke Grönniger; Andreas Schepky; Stefan Gallinat; Horst Wenck; Franz Stäb; Marc Winnefeld
BackgroundThe dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. To investigate how natural substances influence lipolysis and adipogenesis, we determined the effects of White Tea extract on cultured human subcutaneous preadipocytes and adipocytes.MethodsFor our in vitro studies we used a White Tea extract solution that contained polyphenols and methylxanthines. Utilizing cultured human preadipocytes we investigated White Tea extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. In vitro studies on human adipocytes were performed aiming to elucidate the efficacy of White Tea extract solution to stimulate lipolytic activity. To characterize White Tea extract solution-mediated effects on a molecular level, we analyzed gene expression of essential adipogenesis-related transcription factors by qRT-PCR and determined the expression of the transcription factor ADD1/SREBP-1c on the protein level utilizing immunofluorescence analysis.ResultsOur data show that incubation of preadipocytes with White Tea extract solution significantly decreased triglyceride incorporation during adipogenesis in a dose-dependent manner (n = 10) without affecting cell viability (n = 10). These effects were, at least in part, mediated by EGCG (n = 10, 50 μM). In addition, White Tea extract solution also stimulated lipolytic activity in adipocytes (n = 7). Differentiating preadipocytes cultivated in the presence of 0.5% White Tea extract solution showed a decrease in PPARγ, ADD1/SREBP-1c, C/EBPα and C/EBPδ mRNA levels. Moreover, the expression of the transcription factor ADD1/SREBP-1c was not only decreased on the mRNA but also on the protein level.ConclusionWhite Tea extract is a natural source that effectively inhibits adipogenesis and stimulates lipolysis-activity. Therefore, it can be utilized to modulate different levels of the adipocyte life cycle.
Biophysical Journal | 2010
Christian Schulze; Franziska Wetzel; Thomas Kueper; Anke Malsen; Gesa Muhr; Soeren Jaspers; Thomas Blatt; Klaus-Peter Wittern; Horst Wenck; Josef A. Käs
Changes in mechanical properties are an essential characteristic of the aging process of human skin. Previous studies attribute these changes predominantly to the altered collagen and elastin organization and density of the extracellular matrix. Here, we show that individual dermal fibroblasts also exhibit a significant increase in stiffness during aging in vivo. With the laser-based optical cell stretcher we examined the viscoelastic biomechanics of dermal fibroblasts isolated from 14 human donors aged 27 to 80. Increasing age was clearly accompanied by a stiffening of the investigated cells. We found that fibroblasts from old donors exhibited an increase in rigidity of ∼60% with respect to cells of the youngest donors. A FACS analysis of the content of the cytoskeletal polymers shows a shift from monomeric G-actin to polymerized, filamentous F-actin, but no significant changes in the vimentin and microtubule content. The rheological analysis of fibroblast-populated collagen gels demonstrates that cell stiffening directly results in altered viscoelastic properties of the collagen matrix. These results identify a new mechanism that may contribute to the age-related impairment of elastic properties in human skin. The altered mechanical behavior might influence cell functions involving the cytoskeleton, such as contractility, motility, and proliferation, which are essential for reorganization of the extracellular matrix.