Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hosein Mohimani is active.

Publication


Featured researches published by Hosein Mohimani.


ACS Chemical Biology | 2014

Automated Genome Mining of Ribosomal Peptide Natural Products

Hosein Mohimani; Roland D. Kersten; Wei-Ting Liu; Mingxun Wang; Samuel O. Purvine; Si Wu; Heather M. Brewer; Ljiljana Paša-Tolić; Nuno Bandeira; Bradley S. Moore; Pavel A. Pevzner; Pieter C. Dorrestein

Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity.1 In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic data sets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs, and apply it to lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connecting multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 to reflect that it is a natural product that was discovered by mass spectrometry based genome mining using algorithmic tools rather than manual inspection of mass spectrometry data and genetic information. The presented tool is available at cyclo.ucsd.edu.


Journal of Natural Products | 2014

NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery.

Hosein Mohimani; Wei-Ting Liu; Roland D. Kersten; Bradley S. Moore; Pieter C. Dorrestein; Pavel A. Pevzner

Nonribosomal peptides (NRPs) such as vancomycin and daptomycin are among the most effective antibiotics. While NRPs are biomedically important, the computational techniques for sequencing these peptides are still in their infancy. The recent emergence of mass spectrometry techniques for NRP analysis (capable of sequencing an NRP from small amounts of nonpurified material) revealed an enormous diversity of NRPs. However, as many NRPs have nonlinear structure (e.g., cyclic or branched-cyclic peptides), the standard de novo sequencing tools (developed for linear peptides) are not applicable to NRP analysis. Here, we introduce the first NRP identification algorithm, NRPquest, that performs mutation-tolerant and modification-tolerant searches of spectral data sets against a database of putative NRPs. In contrast to previous studies aimed at NRP discovery (that usually report very few NRPs), NRPquest revealed nearly a hundred NRPs (including unknown variants of previously known peptides) in a single study. This result indicates that NRPquest can potentially make MS-based NRP identification as robust as the identification of linear peptides in traditional proteomics.


research in computational molecular biology | 2011

Multiplex de novo sequencing of peptide antibiotics

Hosein Mohimani; Wei-Ting Liu; Yu-Liang Yang; Susana P. Gaudêncio; William Fenical; Pieter C. Dorrestein; Pavel A. Pevzner

Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is nuclear magnetic resonance (NMR)-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic non-ribosomal peptides (NRPs) using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown family of cyclic NRPs produced by marine bacteria. Supplementary Material is available online at www.liebertonline.com/cmb.


Journal of Proteome Research | 2011

Cycloquest: Identification of cyclopeptides via database search of their mass spectra against genome databases

Hosein Mohimani; Wei-Ting Liu; Joshua S. Mylne; Aaron G. Poth; Michelle L. Colgrave; Dat Tran; Michael E. Selsted; Pieter C. Dorrestein; Pavel A. Pevzner

Hundreds of ribosomally synthesized cyclopeptides have been isolated from all domains of life, the vast majority having been reported in the last 15 years. Studies of cyclic peptides have highlighted their exceptional potential both as stable drug scaffolds and as biomedicines in their own right. Despite this, computational techniques for cyclopeptide identification are still in their infancy, with many such peptides remaining uncharacterized. Tandem mass spectrometry has occupied a niche role in cyclopeptide identification, taking over from traditional techniques such as nuclear magnetic resonance spectroscopy (NMR). MS/MS studies require only picogram quantities of peptide (compared to milligrams for NMR studies) and are applicable to complex samples, abolishing the requirement for time-consuming chromatographic purification. While database search tools such as Sequest and Mascot have become standard tools for the MS/MS identification of linear peptides, they are not applicable to cyclopeptides, due to the parent mass shift resulting from cyclization and different fragmentation patterns of cyclic peptides. In this paper, we describe the development of a novel database search methodology to aid in the identification of cyclopeptides by mass spectrometry and evaluate its utility in identifying two peptide rings from Helianthus annuus, a bacterial cannibalism factor from Bacillus subtilis, and a θ-defensin from Rhesus macaque.


Proteomics | 2011

Sequencing Cyclic Peptides by Multistage Mass Spectrometry

Hosein Mohimani; Yu-Liang Yang; Wei-Ting Liu; Pei-Wen Hsieh; Pieter C. Dorrestein; Pavel A. Pevzner

Some of the most effective antibiotics (e.g. Vancomycin and Daptomycin) are cyclic peptides produced by non‐ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of MS‐based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage MS, and show its advantages over single‐stage MS. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria.


Nature Chemical Biology | 2017

Dereplication of peptidic natural products through database search of mass spectra

Hosein Mohimani; Alexey Gurevich; Alla Mikheenko; Neha Garg; Louis-Félix Nothias; Akihiro Ninomiya; Kentaro Takada; Pieter C. Dorrestein; Pavel A. Pevzner

Peptidic Natural Products (PNPs) are widely used compounds that include many antibiotics and a variety of other bioactive peptides. While recent breakthroughs in PNP discovery raised the challenge of developing new algorithms for their analysis, identification of PNPs via database search of tandem mass spectra remains an open problem. To address this problem, natural product researchers utilize dereplication strategies that identify known PNPs and lead to the discovery of new ones even in cases when the reference spectra are not present in existing spectral libraries. DEREPLICATOR is a new dereplication algorithm that enabled high-throughput PNP identification and that is compatible with large-scale mass spectrometry-based screening platforms for natural product discovery. After searching nearly one hundred million tandem mass spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure, DEREPLICATOR identified an order of magnitude more PNPs (and their new variants) than any previous dereplication efforts.


Journal of Proteome Research | 2013

A New Approach to Evaluating Statistical Significance of Spectral Identifications

Hosein Mohimani; Sangtae Kim; Pavel A. Pevzner

While nonlinear peptide natural products such as Vancomycin and Daptomycin are among the most effective antibiotics, the computational techniques for sequencing such peptides are still in their infancy. Previous methods for sequencing peptide natural products are based on Nuclear Magnetic Resonance spectroscopy and require large amounts (milligrams) of purified materials. Recently, development of mass spectrometry-based methods has enabled accurate sequencing of nonlinear peptide natural products using picograms of material, but the question of evaluating statistical significance of Peptide Spectrum Matches (PSM) for these peptides remains open. Moreover, it is unclear how to decide whether a given spectrum is produced by a linear, cyclic, or branch-cyclic peptide. Surprisingly, all previous mass spectrometry studies overlooked the fact that a very similar problem has been successfully addressed in particle physics in 1951. In this work, we develop a method for estimating statistical significance of PSMs defined by any peptide (including linear and nonlinear). This method enables us to identify whether a peptide is linear, cyclic, or branch-cyclic, an important step toward identification of peptide natural products.


mSystems | 2016

Spatial Molecular Architecture of the Microbial Community of a Peltigera Lichen

Neha Garg; Yi Zeng; Anna Edlund; Alexey V. Melnik; Laura M. Sanchez; Hosein Mohimani; Alexey Gurevich; Vivian Miao; Stefan Schiffler; Yan Wei Lim; Tal Luzzatto-Knaan; Shengxin Cai; Forest Rohwer; Pavel A. Pevzner; Robert H. Cichewicz; Theodore Alexandrov; Pieter C. Dorrestein

Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level. ABSTRACT Microbes are commonly studied as individual species, but they exist as mixed assemblages in nature. At present, we know very little about the spatial organization of the molecules, including natural products that are produced within these microbial networks. Lichens represent a particularly specialized type of symbiotic microbial assemblage in which the component microorganisms exist together. These composite microbial assemblages are typically comprised of several types of microorganisms representing phylogenetically diverse life forms, including fungi, photosymbionts, bacteria, and other microbes. Here, we employed matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrometry to characterize the distributions of small molecules within a Peltigera lichen. In order to probe how small molecules are organized and localized within the microbial consortium, analytes were annotated and assigned to their respective producer microorganisms using mass spectrometry-based molecular networking and metagenome sequencing. The spatial analysis of the molecules not only reveals an ordered layering of molecules within the lichen but also supports the compartmentalization of unique functions attributed to various layers. These functions include chemical defense (e.g., antibiotics), light-harvesting functions associated with the cyanobacterial outer layer (e.g., chlorophyll), energy transfer (e.g., sugars) surrounding the sun-exposed cyanobacterial layer, and carbohydrates that may serve a structural or storage function and are observed with higher intensities in the non-sun-exposed areas (e.g., complex carbohydrates). IMPORTANCE Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level.


international symposium on information theory | 2010

Exact calculation of pattern probabilities

Jayadev Acharya; Hirakendu Das; Hosein Mohimani; Alon Orlitsky; Shengjun Pan

We describe two algorithms for calculating the probability of m-symbol length-n patterns over k-element distributions, a partition-based algorithm with complexity roughly 2O(m log m) and a recursive algorithm with complexity roughly 2O(m+log n) with the precise bounds provided in the text. The problem is related to symmetric-polynomial evaluation, and the analysis reveals a connection to the number of connected graphs.


mSystems | 2017

Metabolic Fingerprints from the Human Oral Microbiome Reveal a Vast Knowledge Gap of Secreted Small Peptidic Molecules

Anna Edlund; Neha Garg; Hosein Mohimani; Alexey Gurevich; Xuesong He; Wenyuan Shi; Pieter C. Dorrestein; Jeffrey S. McLean

Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473–484, 2016, https://doi.org/10.1038/nrd.2016.32 ). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 1030 in the biosphere (K. Garber, Nat Biotechnol 33:228–231, 2015, https://doi.org/10.1038/nbt.3161 ). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which represents a major bottleneck for global SM identification. These challenges have prompted new developments of databases and analysis tools that provide putative classifications of SMs by mass spectral alignments to already characterized tandem mass spectrometry spectra and databases containing structural information (e.g., PubChem and AntiMarin). In this study, we assessed secreted peptidic SMs (PSMs) from 27 oral bacterial isolates and a complex oral in vitro biofilm community of >100 species by using the Global Natural Products Social molecular Networking and the DEREPLICATOR infrastructures, which are methodologies that allow automated and putative annotation of PSMs. These approaches enabled the identification of an untapped resource of PSMs from oral bacteria showing species-unique patterns of secretion with putative matches to known bioactive compounds. ABSTRACT Recent research indicates that the human microbiota play key roles in maintaining health by providing essential nutrients, providing immune education, and preventing pathogen expansion. Processes underlying the transition from a healthy human microbiome to a disease-associated microbiome are poorly understood, partially because of the potential influences from a wide diversity of bacterium-derived compounds that are illy defined. Here, we present the analysis of peptidic small molecules (SMs) secreted from bacteria and viewed from a temporal perspective. Through comparative analysis of mass spectral profiles from a collection of cultured oral isolates and an established in vitro multispecies oral community, we found that the production of SMs both delineates a temporal expression pattern and allows discrimination between bacterial isolates at the species level. Importantly, the majority of the identified molecules were of unknown identity, and only ~2.2% could be annotated and classified. The catalogue of bacterially produced SMs we obtained in this study reveals an undiscovered molecular world for which compound isolation and ecosystem testing will facilitate a better understanding of their roles in human health and disease. IMPORTANCE Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473–484, 2016, https://doi.org/10.1038/nrd.2016.32 ). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 1030 in the biosphere (K. Garber, Nat Biotechnol 33:228–231, 2015, https://doi.org/10.1038/nbt.3161 ). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which represents a major bottleneck for global SM identification. These challenges have prompted new developments of databases and analysis tools that provide putative classifications of SMs by mass spectral alignments to already characterized tandem mass spectrometry spectra and databases containing structural information (e.g., PubChem and AntiMarin). In this study, we assessed secreted peptidic SMs (PSMs) from 27 oral bacterial isolates and a complex oral in vitro biofilm community of >100 species by using the Global Natural Products Social molecular Networking and the DEREPLICATOR infrastructures, which are methodologies that allow automated and putative annotation of PSMs. These approaches enabled the identification of an untapped resource of PSMs from oral bacteria showing species-unique patterns of secretion with putative matches to known bioactive compounds. Author Video: An author video summary of this article is available.

Collaboration


Dive into the Hosein Mohimani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei-Ting Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Alexey Gurevich

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Neha Garg

University of Montana

View shared research outputs
Top Co-Authors

Avatar

Anna Edlund

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael E. Selsted

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sangtae Kim

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge