Hossain M. Fahad
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hossain M. Fahad.
Nature | 2016
Wei Gao; Sam Emaminejad; Hnin Yin Yin Nyein; Samyuktha Challa; Kevin S. Chen; Austin Peck; Hossain M. Fahad; Hiroki Ota; Hiroshi Shiraki; Daisuke Kiriya; Der-Hsien Lien; George A. Brooks; Ronald W. Davis; Ali Javey
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.
ACS Nano | 2016
Hnin Yin Yin Nyein; Wei Gao; Ziba Shahpar; Sam Emaminejad; Samyuktha Challa; Kevin S. Chen; Hossain M. Fahad; Li-Chia Tai; Hiroki Ota; Ronald W. Davis; Ali Javey
Homeostasis of ionized calcium in biofluids is critical for human biological functions and organ systems. Measurement of ionized calcium for clinical applications is not easily accessible due to its strict procedures and dependence on pH. pH balance in body fluids greatly affects metabolic reactions and biological transport systems. Here, we demonstrate a wearable electrochemical device for continuous monitoring of ionized calcium and pH of body fluids using a disposable and flexible array of Ca(2+) and pH sensors that interfaces with a flexible printed circuit board. This platform enables real-time quantitative analysis of these sensing elements in body fluids such as sweat, urine, and tears. Accuracy of Ca(2+) concentration and pH measured by the wearable sensors is validated through inductively coupled plasma-mass spectrometry technique and a commercial pH meter, respectively. Our results show that the wearable sensors have high repeatability and selectivity to the target ions. Real-time on-body assessment of sweat is also performed, and our results indicate that calcium concentration increases with decreasing pH. This platform can be used in noninvasive continuous analysis of ionized calcium and pH in body fluids for disease diagnosis such as primary hyperparathyroidism and kidney stones.
Nano Letters | 2011
Hossain M. Fahad; Casey Smith; Jhonathan P. Rojas; Muhammad Mustafa Hussain
We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Sam Emaminejad; Wei Gao; Eric Wu; Zoe Davies; Hnin Yin Yin Nyein; Samyuktha Challa; Sean P. Ryan; Hossain M. Fahad; Kevin C. Chen; Ziba Shahpar; Salmonn Talebi; Carlos Milla; Ali Javey; Ronald W. Davis
Significance The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. Through devising an electrochemically enhanced, programmable, and miniaturized iontophoresis interface, integrated in a wearable sensing platform, we demonstrated a method for periodic sweat extraction and in situ analysis. The system can be programmed to induce sweat with various secretion profiles, which in combination with the in situ analysis capability allow us to gain real-time insight into the sweat-secretion and gland physiology. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. Perspiration-based wearable biosensors facilitate continuous monitoring of individuals’ health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.
ACS Nano | 2014
Galo A. Torres Sevilla; Mohamed T. Ghoneim; Hossain M. Fahad; Jhonathan P. Rojas; Aftab M. Hussain; Muhammad Mustafa Hussain
With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.
Scientific Reports | 2012
Hossain M. Fahad; Muhammad Mustafa Hussain
Decade long research in 1D nanowire field effect transistors (FET) shows although it has ultra-low off-state leakage current and a single device uses a very small area, its drive current generation per device is extremely low. Thus it requires arrays of nanowires to be integrated together to achieve appreciable amount of current necessary for high performance computation causing an area penalty and compromised functionality. Here we show that a FET with a nanotube architecture and core-shell gate stacks is capable of achieving the desirable leakage characteristics of the nanowire FET while generating a much larger drive current with area efficiency. The core-shell gate stacks of silicon nanotube FETs tighten the electrostatic control and enable volume inversion mode operation leading to improved short channel behavior and enhanced performance. Our comparative study is based on semi-classical transport models with quantum confinement effects which offers new opportunity for future generation high performance computation.
Advanced Materials | 2017
Yuji Gao; Hiroki Ota; Ethan W. Schaler; Kevin C. Chen; Allan Zhao; Wei Gao; Hossain M. Fahad; Yonggang Leng; Anzong Zheng; Furui Xiong; Chuchu Zhang; Li-Chia Tai; Peida Zhao; Ronald S. Fearing; Ali Javey
Flexible pressure sensors have many potential applications in wearable electronics, robotics, health monitoring, and more. In particular, liquid-metal-based sensors are especially promising as they can undergo strains of over 200% without failure. However, current liquid-metal-based strain sensors are incapable of resolving small pressure changes in the few kPa range, making them unsuitable for applications such as heart-rate monitoring, which require a much lower pressure detection resolution. In this paper, a microfluidic tactile diaphragm pressure sensor based on embedded Galinstan microchannels (70 µm width × 70 µm height) capable of resolving sub-50 Pa changes in pressure with sub-100 Pa detection limits and a response time of 90 ms is demonstrated. An embedded equivalent Wheatstone bridge circuit makes the most of tangential and radial strain fields, leading to high sensitivities of a 0.0835 kPa-1 change in output voltage. The Wheatstone bridge also provides temperature self-compensation, allowing for operation in the range of 20-50 °C. As examples of potential applications, a polydimethylsiloxane (PDMS) wristband with an embedded microfluidic diaphragm pressure sensor capable of real-time pulse monitoring and a PDMS glove with multiple embedded sensors to provide comprehensive tactile feedback of a human hand when touching or holding objects are demonstrated.
IEEE Transactions on Electron Devices | 2013
Hossain M. Fahad; Muhammad Mustafa Hussain
To increase typically low output drive currents from tunnel field-effect transistors (FETs), we show a silicon vertical nanotube (NT) architecture-based FETs effectiveness. Using core (inner) and shell (outer) gate stacks, the silicon NT tunneling FET shows a sub-60 mV/dec subthreshold slope, ultralow off -state leakage current, higher drive current compared with gate-all-around nanowire silicon tunnel FETs.
Applied Physics Letters | 2013
Hossain M. Fahad; Aftab M. Hussain; G. A. Torres Sevilla; Muhammad Mustafa Hussain
We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.
Science Advances | 2017
Hossain M. Fahad; Hiroshi Shiraki; Matin Amani; Chuchu Zhang; Vivek Srinivas Hebbar; Wei Gao; Hiroki Ota; Mark Hettick; Daisuke Kiriya; Yu-Ze Chen; Yu-Lun Chueh; Ali Javey
Multigas sensors on a chip with chemical-sensitive nanoscale silicon transistors. There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H2S, H2, and NO2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors.