Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hossein Agheli is active.

Publication


Featured researches published by Hossein Agheli.


Journal of Cellular Biochemistry | 2007

Nanomechanotransduction and interphase nuclear organization influence on genomic control.

Matthew J. Dalby; Nikolaj Gadegaard; Pawel Herzyk; Duncan S. Sutherland; Hossein Agheli; Chris D. W. Wilkinson; Adam Curtis

The ability of cells to alter their genomic regulation in response to mechanical conditioning or through changes in morphology and the organization of the interphase nuclei are key questions in cell biology. Here, two nanotopographies have been used as a model surfaces to change cell morphology in order to investigate spatial genomic changes within the nuclei of fibroblasts. Initially, centromeres for chromosome pairs were labeled and the average distance on different substrates calculated. Further to this, Affymetrix whole genome GeneChips® were used to rank genomic changes in response to topography and plot the whereabouts on the chromosomes these changes were occurring. It was seen that as cell spreading was changed, so were the positions along the chromosomes that gene regulations were being observed. We hypothesize that as changes in cell and thus nuclear morphology occur, that this may alter the probability of transcription through opening or closing areas of the chromosomes to transcription factors. J. Cell. Biochem. 102: 1234–1244, 2007.


International Journal of Artificial Organs | 2006

Study of Staphylococcus aureus adhesion on a novel nanostructured surface by chemiluminometry.

Davide Campoccia; Lucio Montanaro; Hossein Agheli; Duncan S. Sutherland; Valter Pirini; Maria Elena Donati; Carla Renata Arciola

In recent years the progress in the field of nanotechnologies has offered new possibilities to control the superficial features of implant materials down to a nanoscale level. Several studies have therefore tried to explore the effects of nanostructured biomaterial surfaces on the behavior of eukaryotic cells. However, nanotopography could exert an influence also on the behavior of prokaryotic cells, with relevant implications concerning the susceptibility of implant surfaces to infection. Aim of this study was to examine the behavior of Staphylococcus aureus on polyethylene terephthalate (PET) surfaces either cylindrically nanostructured (PET-N) or flat ion-etched (PET-F), and on tissue culture-grade polystyrene (PS). Microbial adherence was assessed by chemiluminometry under 4 different conditions: (a) bacteria suspended in MEM medium, (b) bacteria in MEM supplemented with 10% fetal bovine serum (FBS), (c) test surfaces preconditioned in FBS, and (d) post-exposure of colonised surfaces to serum-supplemented MEM. Under all circumstances, PET-F and PET-N specimens showed identical bacterial adhesion properties. In the absence of serum, all 3 test materials showed a very high adhesivity to microbial cells and both PET surfaces exhibited greater adhesion than PS. On the contrary, the presence of 10% serum in solution significantly affected cell behavior: the number of microbial cells on all surfaces was drastically reduced, and the adhesion properties of PET surfaces with respect to PS were reversed, with PET being less adhesive. Overall, the specific cylindrical nanostructures created on PET did not significantly influence microbial behavior. Ongoing studies are verifying whether other nanotopographies with different geometry could have more substantial effects.


International Journal of Nanomedicine | 2011

Nanostructured model implants for in vivo studies: influence of well-defined nanotopography on de novo bone formation on titanium implants.

Ahmed Ballo; Hossein Agheli; Jukka Lausmaa; Peter Thomsen; Sarunas Petronis

An implantable model system was developed to investigate the effects of nanoscale surface properties on the osseointegration of titanium implants in rat tibia. Topographical nanostructures with a well-defined shape (semispherical protrusions) and variable size (60 nm, 120 nm and 220 nm) were produced by colloidal lithography on the machined implants. Furthermore, the implants were sputter-coated with titanium to ensure a uniform surface chemical composition. The histological evaluation of bone around the implants at 7 days and 28 days after implantation was performed on the ground sections using optical and scanning electron microscopy. Differences between groups were found mainly in the new bone formation process in the endosteal and marrow bone compartments after 28 days of implantation. Implant surfaces with 60 nm features demonstrated significantly higher bone-implant contact (BIC, 76%) compared with the 120 nm (45%) and control (57%) surfaces. This effect was correlated to the higher density and curvature of the 60 nm protrusions. Within the developed model system, nanoscale protrusions could be applied and systematically varied in size in the presence of microscale background roughness on complex screw-shaped implants. Moreover, the model can be adapted for the systematic variation of surface nanofeature density and chemistry, which opens up new possibilities for in vivo studies of various nanoscale surface-bone interactions.


Journal of Biomaterials Science-polymer Edition | 2006

In vitro and in vivo response to nanotopographically-modified surfaces of poly (3 -hydroxybutyrate -co -3 -hydroxyvalerate) and polycaprolactone

Gianluca Giavaresi; Matilde Tschon; John H. Daly; John J. Liggat; Duncan S. Sutherland; Hossein Agheli; Milena Fini; Paola Torricelli; Roberto Giardino

Colloidal lithography and embossing master are new techniques of producing nanotopography, which have been recently applied to improve tissue response to biomaterials by modifying the surface topography on a nano-scale dimension. A natural polyester (Biopol™), 8% 3-hydroxyvalerate-component (D400G) and a conventional biodegradable polycaprolactone (PCL) were studied, both nanostructured and native forms, in vitro and in vivo. Nanopits (100-nm deep, 120-nm diameter) on the D400G surface were produced by the embossing master technique (Nano-D400G), while nanocylinders (160-nm height, 100-nm diameter) on the PCL surface were made by the colloidal lithography technique (Nano-PCL). L929 fibroblasts were seeded on polyesters, and cell proliferation, cytotoxic effect, synthetic and cytokine production were assessed after 72 h and 7 days. Then, under general anesthesia, 3 Sprague–Dawley rats received dorsal subcutaneous implants of nanostructured and native polyesters. At 1, 4 and 12 weeks the animals were pharmacologically euthanized and implants with surrounding tissue studied histologically and histomorphometrically. In vitro results showed significant differences between D400G and PCL in Interleukin-6 production at 72 h. At 7 days, significant (P < 0.05) differences were found in Interleukin-1 β and tumor necrosis factor-α release for Nano-PCL when compared to Nano-D400G, and for PCL in comparison with D400G. In vivo results indicated that Nano-D400G implants produced a greater extent of inflammatory tissue than Nano-PCL at 4 weeks. The highest vascular densities were observed for Nano-PCL at 4 and 12 weeks. Chemical and topographical factors seem to be responsible for the different behaviour, and from the obtained results a prevalence of chemistry on in vitro data and nanotopography on soft tissue response in vivo are hypothesized, although more detailed investigations are necessary in this field.


International Journal of Nanomedicine | 2016

The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo

Dimitrios Karazisis; Ahmed Ballo; Sarunas Petronis; Hossein Agheli; Lena Emanuelsson; Peter Thomsen; Omar Omar

Purpose Mechanisms governing the cellular interactions with well-defined nanotopography are not well described in vivo. This is partly due to the difficulty in isolating a particular effect of nanotopography from other surface properties. This study employed colloidal lithography for nanofabrication on titanium implants in combination with an in vivo sampling procedure and different analytical techniques. The aim was to elucidate the effect of well-defined nanotopography on the molecular, cellular, and structural events of osseointegration. Materials and methods Titanium implants were nanopatterned (Nano) with semispherical protrusions using colloidal lithography. Implants, with and without nanotopography, were implanted in rat tibia and retrieved after 3, 6, and 28 days. Retrieved implants were evaluated using quantitative polymerase chain reaction, histology, immunohistochemistry, and energy dispersive X-ray spectroscopy (EDS). Results Surface characterization showed that the nanotopography was well defined in terms of shape (semispherical), size (79±6 nm), and distribution (31±2 particles/µm2). EDS showed similar levels of titanium, oxygen, and carbon for test and control implants, confirming similar chemistry. The molecular analysis of the retrieved implants revealed that the expression levels of the inflammatory cytokine, TNF-α, and the osteoclastic marker, CatK, were reduced in cells adherent to the Nano implants. This was consistent with the observation of less CD163-positive macrophages in the tissue surrounding the Nano implant. Furthermore, periostin immunostaining was frequently detected around the Nano implant, indicating higher osteogenic activity. This was supported by the EDS analysis of the retrieved implants showing higher content of calcium and phosphate on the Nano implants. Conclusion The results show that Nano implants elicit less periimplant macrophage infiltration and downregulate the early expression of inflammatory (TNF-α) and osteoclastic (CatK) genes. Immunostaining and elemental analyses show higher osteogenic activity at the Nano implant. It is concluded that an implant with the present range of well-defined nanocues attenuates the inflammatory response while enhancing mineralization during osseointegration.


International Journal of Nanomedicine | 2014

Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro

Giuseppe Maria de Peppo; Hossein Agheli; Camilla Karlsson; Karin M. Ekström; Helena Brisby; Maria Lennerås; Stefan Gustafsson; Peter Sjövall; Anna Johansson; Eva Olsson; Jukka Lausmaa; Peter Thomsen; Sarunas Petronis

Background Patterning medical devices at the nanoscale level enables the manipulation of cell behavior and tissue regeneration, with topographic features recognized as playing a significant role in the osseointegration of implantable devices. Methods In this study, we assessed the ability of titanium-coated hemisphere-like topographic nanostructures of different sizes (approximately 50, 100, and 200 nm) to influence the morphology, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Results We found that the proliferation and osteogenic differentiation of hMSCs was influenced by the size of the underlying structures, suggesting that size variations in topographic features at the nanoscale level, independently of chemistry, can be exploited to control hMSC behavior in a size-dependent fashion. Conclusion Our studies demonstrate that colloidal lithography, in combination with coating technologies, can be exploited to investigate the cell response to well defined nanoscale topography and to develop next-generation surfaces that guide tissue regeneration and promote implant integration.


IEEE Transactions on Nanobioscience | 2007

Human Fibroblast and Human Bone Marrow Cell Response to Lithographically Nanopatterned Adhesive Domains on Protein Rejecting Substrates

Catherine C. Berry; Adam Curtis; Richard O.C. Oreffo; Hossein Agheli; Duncan S. Sutherland

The separate influence of topographical and chemical cues on cell attachment and spreading are well documented; however, that of duel-cue substrates is less so. In this study graft copolymers that sterically stabilize biological surfaces were employed alongside nanotopographical features fabricated by colloidal lithography. This resulted in the production of a range of substrates whereby the effect of chemistry and or topography on both on human fibroblast and bone marrow cell adhesion and spreading could be observed. The current studies indicate an enhancement of cell response as a consequence of modifications in material topography, whereas the current selected chemical cues inhibited cell function. Critically, in combination, topography modulated the effects of chemical environment.


IEEE Transactions on Nanobioscience | 2006

Nanofabrication of polymer surfaces utilizing colloidal lithography and ion etching

Hossein Agheli; Duncan S. Sutherland

In this paper, we utilize colloidal lithography based on electrostatic self-assembly of polystyrene colloidal particles onto a polymer surface as a nanoscale mask. The pattern is then transferred to the surface by ion beam etching. Each particle acts as an individual mask, resulting in an array of identical structure. Ion beam exposure etches away the unmasked surface between the particles, so the particle mask pattern can be transferred into the polymer surface. This method allows to nanofabricate bulk polymeric surfaces with systematic variation in relief, structure sizes, and aspect ratios. It is a fast, simple, and reliable method to fabricated different polymeric surfaces even on large area samples (>1 cm2). The structural variation is achieved by use of different conditions during the self-assembly of the mask (e.g., different particles sizes) or different ion etching conditions during the pattern transfer (e.g., ion energy, ion flux, ion incident angle, etching time, gas environment)


Pure and Applied Chemistry | 2011

Metal nanoparticle enhanced radiative transitions: giving singlet oxygen emission a boost

Rasmus Toftegaard; Jacob Arnbjerg; Huaiping Cong; Hossein Agheli; Duncan S. Sutherland; Peter R. Ogilby

The fabrication and use of metal nanoparticles to influence electronic transitions in a given molecule is of growing interest; there is much to be gained by developing and exploiting methods to enhance weak optical signals. Singlet molecular oxygen, O2(a1∆g), which is an important intermediate in many oxidation reactions, particularly in biological systems, is ideally monitored by the 1275-nm O2(a1∆g) → O2(X3Σg–) phosphorescent transition. Unfortunately, the latter is highly forbidden and, as such, often presents a severe limitation in the application of this optical probe. In this paper, we describe how this weak phosphorescent transition can be enhanced by using localized surface plasmons (LSPs) from specially engineered gold nanostructures. In an attempt to elucidate the mechanism of this process, data were recorded from samples in which we decoupled the component of the plasmon resonance that absorbs incident light from the component that scatters incident light. We find that the latter appears to be the feature of significance in the process through which singlet oxygen phosphorescence is enhanced. In this work, we also illustrate how the singlet oxygen system provides an ideal model for a general study of metal-enhanced radiative rate constants.


Biomaterials | 2006

Osteoprogenitor response to semi-ordered and random nanotopographies

Matthew J. Dalby; David McCloy; Mary Robertson; Hossein Agheli; Duncan S. Sutherland; Stanley Affrossman; Richard O.C. Oreffo

Collaboration


Dive into the Hossein Agheli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Thomsen

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Sarunas Petronis

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed Ballo

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Jukka Lausmaa

SP Technical Research Institute of Sweden

View shared research outputs
Top Co-Authors

Avatar

Anna Johansson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge