Houcemeddine Othman
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Houcemeddine Othman.
Matrix Biology | 2013
Maram Morjen; Olfa Kallech-Ziri; Amine Bazaa; Houcemeddine Othman; Kamel Mabrouk; Raoudha Zouari-Kessentini; Libia Sanz; Juan J. Calvete; Najet Srairi-Abid; Mohamed El Ayeb; José Luis; Naziha Marrakchi
A novel Kunitz-type serine proteinase inhibitor, termed PIVL, was purified to homogeneity from the venom of the Tunisian snake Macrovipera lebetina transmediterranea. It is a monomeric polypeptide chain cross-linked by three disulfide linkages with an isotope-averaged molecular mass of 7691.7 Da. The 67-residue full-length PIVL sequence was deduced from a venom gland cDNA clone. Structurally, PIVL is built by a single Kunitz/BPTI-like domain. Functionally, it is able to specifically inhibit trypsin activity. Interestingly, PIVL exhibits an anti-tumor effect and displays integrin inhibitory activity without being cytotoxic. Here we show that PIVL is able to dose-dependently inhibit the adhesion, migration and invasion of human glioblastoma U87 cells. Our results also show that PIVL impairs the function of αvβ3 and to a lesser extent, the activity of αvβ6, αvβ5, α1β1 and α5β1 integrins. Interestingly, we demonstrate that the (41)RGN(43) motif of PIVL is likely responsible for its anti-cancer effect. By using time lapse videomicroscopy, we found that PIVL significantly reduced U87 cells motility and affected cell directionality persistence by 68%. These findings reveal novel pharmacological effects for a Kunitz-type serine proteinase inhibitor.
Toxicon | 2014
Zaineb Abdelkafi-Koubaa; Jed Jebali; Houcemeddine Othman; Maram Morjen; Imen Aissa; Raoudha Zouari-Kesentini; Amine Bazaa; Amen Allah Ellefi; Hafedh Majdoub; Najet Srairi-Abid; Youssef Gargouri; Mohamed El Ayeb; Naziha Marrakchi
A new L-amino acid oxidase (LAAO) from Cerastes cerastes snake venom, named CC-LAAO, was purified to homogeneity using a combination of size-exclusion, ion-exchange and affinity chromatography. CC-LAAO is a homodimeric glycosylated flavoprotein with a molecular mass around 58 kDa under reducing conditions and about 115 kDa in its native form when analyzed by SDS-PAGE and gel filtration chromatography, respectively. This enzyme displayed a Michaelis-Menten behavior with an optimal pH at 7.8. However, unlike known SV-LAAOs which display their maximum activity at 37 °C, CC-LAAO has an optimal temperature at 50 °C. Kinetic studies showed that the enzyme displayed high specificity towards hydrophobic L-amino acids. The best substrates were L-Phe, L-Met and L-Leu. CC-LAAO activity was inhibited by the substrate analog N-acetyl tryptophan. The N-terminal amino acid sequence of this protein was determined by automated Edman degradation. The CC-LAAO cDNA was cloned from the venom gland total RNA preparation. The cDNA sequence contained an open-reading frame (ORF) of 1551-bp, which encoded a protein of 516 amino acids comprising a signal peptide of 18 amino acids and 498-residues mature protein. CC-LAAO sequence and its tertiary model shared high similarity with other snake venom LAAOs.
Molecular Carcinogenesis | 2017
Ons Zakraoui; Cezary Marcinkiewicz; Zohra Aloui; Houcemeddine Othman; Renaud Grépin; Meriam Haoues; Makram Essafi; Najet Srairi-Abid; Ammar Gasmi; Habib Karoui; Gilles Pagès; Khadija Essafi-Benkhadir
Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP‐induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53‐dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin‐dependent kinase inhibitors p21 and p27. Interestingly, Lebein‐induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase‐independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF‐induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer.
Biochimica et Biophysica Acta | 2015
Raida Jallouli; Houcemeddine Othman; Sawsan Amara; Goetz Parsiegla; Frédéric Carrière; Najet Srairi-Abid; Youssef Gargouri; Sofiane Bezzine
The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658±146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785±83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991±85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests.
FEBS Journal | 2015
Amira Refai; Meriam Haoues; Houcemeddine Othman; Mohamed Ridha Barbouche; Philippe Moua; Arnaud Bondon; Liza Mouret; Najet Srairi-Abid; Makram Essafi
Early secreted antigenic target 6 kDa (ESAT‐6) and culture filtrate protein 10 kDa (CFP‐10) are complex proteins secreted by Mycobacterium tuberculosis that play a major role in the pathogenesis of tuberculosis. However, studies focusing on the biological functions of ESAT‐6 led to discordant results and the role of ESAT‐6 remains controversial. In the present study, we aim to address a potential explanation for this discrepancy and to highlight the physiological impact of two conformational states of ESAT‐6. Analysis of a recombinant form of ESAT‐6 by native gel electrophoresis, size exclusion chromatography and CD spectroscopy revealed that ESAT‐6 forms dimers/multimers with higher molecular weight, which disappeared under the action of the detergent amidosulfobetaine‐14 (ASB), giving rise to another conformational state of the protein. NMR has further indicated that ASB‐treated versus nontreated ESAT‐6 adopted distinct structural forms but with no well defined tertiary structure. However, protein–protein docking analysis favored a dimeric state of ESAT‐6. Interestingly, the two preparations presented opposing effects on mycobacterial infectivity, as well as macrophage survival, interferon‐γ secretion and membrane pore formation. Thereafter, we generated a recombinant form of the physiological heterodimer ESAT‐6/CFP‐10 that ASB was also able to dissociate and which showed functions similar to those of ESAT‐6 dimers/multimers. Our data suggest that, in the absence of CFP‐10, the hydrophobic regions of the ESAT‐6 can form dimers/multimers, mimicking the ESAT‐6/CFP‐10 heterodimer, whereas their dissociation generates a protein presenting entirely different activities. Overall, the present study clarifies the intriguing divergences between reports that could be attributed to the ESAT‐6 oligomeric state and sheds light on its importance for a better comprehension of the physiopathology of tuberculosis.
Biochimica et Biophysica Acta | 2018
Manel B Hammouda; Ichrak Riahi-Chebbi; Soumaya Souid; Houcemeddine Othman; Zohra Aloui; Najet Srairi-Abid; Habib Karoui; Ammar Gasmi; Edith Magnenat; Timothy N. C. Wells; Kenneth J. Clemetson; José Neptuno Rodríguez-López; Khadija Essafi-Benkhadir
BACKGROUND The resistance of melanoma cells to cisplatin restricts its clinical use. Therefore, the search for novel tumor inhibitors and effective combination treatments that sensitize tumor cells to this drug are still needed. We purified macrovipecetin, a novel heterodimeric C-type lectin, from Macrovipera lebetina snake venom and investigated its anti-tumoral effect on its own or combined with cisplatin, in human melanoma cells. METHODS Biochemical characterization, in vitro cells assays such as viability, apoptosis, adhesion, migration, invasion, Western blotting and in silico analysis were used in this study. RESULTS Macrovipecetin decreased melanoma cell viability 100 times more than cisplatin. Interestingly, when combined with the drug, macrovipecetin enhanced the sensitivity of SK-MEL-28 cells by augmenting their apoptosis through increased expression of the apoptosis inducing factor (AIF) and activation of ERK1/2, p38, AKT and NF-κB. Moreover, macrovipecetin alone or combined with cisplatin induced the expression of TRADD, p53, Bax, Bim and Bad and down-regulated the Bcl-2 expression and ROS levels in SK-MEL-28 cells. Interestingly, these treatments impaired SK-MEL-28 cell adhesion, migration and invasion through modulating the function and expression of αvβ3 integrin along with regulating E-cadherin, vimentin, β-catenin, c-Src and RhoA expression. In silico study suggested that only the α chain of macrovipecetin interacts with a region overlapping the RGD motif binding site on this integrin. CONCLUSIONS We validated the antitumor effect of macrovipecetin when combined, or not, with cisplatin on SK-MEL-28 cells. GENERAL SIGNIFICANCE The presented work proposes the potential use of macrovipecetin and cisplatin in combination as an effective anti-melanoma treatment.
PLOS ONE | 2015
Rym ElFessi-Magouri; Steve Peigneur; Houcemeddine Othman; Najet Srairi-Abid; Mohamed Elayeb; Jan Tytgat; Riadh Kharrat
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.
International Journal of Biological Macromolecules | 2016
Douja Baîram; Imen Aissa; Hanen Louati; Houcemeddine Othman; Zaineb Abdelkafi-Koubaa; Najeh Krayem; Mohamed El Ayeb; Najet Srairi-Abid; Naziha Marrakchi; Youssef Gargouri
Toxicon | 2014
Saoussen Mlayah-Bellalouna; Martial A Dufour; Kamel Mabrouk; Hafedh Mejdoub; Edmond Carlier; Houcemeddine Othman; Maya Belghazi; Marion Tarbe; Jean-Marc Goaillard; Didier Gigmes; Michael Seagar; Mohamed El Ayeb; Dominique Debanne; Najet Srairi-Abid
Toxicon | 2014
R.M. El Fessi; Steve Peigneur; Houcemeddine Othman; Najet Srairi-Abid; M. El Ayeb; Jan Tytgat; Riadh Kharrat