Houk Paek
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Houk Paek.
Journal of Climate | 2015
Jin-Yi Yu; Pei Ken Kao; Houk Paek; Huang-Hsiung Hsu; Chih Wen Hung; Mong Ming Lu; Soon Il An
AbstractThe ocean–atmosphere coupling in the northeastern subtropical Pacific is dominated by a Pacific meridional mode (PMM), which spans between the extratropical and tropical Pacific and plays an important role in connecting extratropical climate variability to the occurrence of El Nino. Analyses of observational data and numerical model experiments were conducted to demonstrate that the PMM (and the subtropical Pacific coupling) experienced a rapid strengthening in the early 1990s and that this strengthening is related to an intensification of the subtropical Pacific high caused by a phase change of the Atlantic multidecadal oscillation (AMO). This PMM strengthening favored the development of more central Pacific (CP)-type El Nino events. The recent shift from more conventional eastern Pacific (EP) to more CP-type El Nino events can thus be at least partly understood as a Pacific Ocean response to a phase change in the AMO.
Geophysical Research Letters | 2017
Houk Paek; Jin-Yi Yu; Chengcheng Qian
Subtle but important differences are identified between the 1997/1998 and 2015/2016 extreme El Ninos that reflect fundamental differences in their underlying dynamics. The 1997/1998 event is found to evolve following the eastern Pacific El Nino dynamics that relies on basin-wide thermocline variations, whereas the 2015/2016 event involves additionally the central Pacific (CP) El Nino dynamics that depends on subtropical forcing. The stronger CP dynamics during the 2015/2016 event resulted in its sea surface temperature (SST) anomalies lingering around the International Date Line during the decaying phase, which is in contrast to the retreat of the anomalies toward the South American Coast during the decaying phase of the 1997/1998 event. The different SST evolution excited different wave trains resulting in the western U.S. not receiving the same above-normal rainfall during the 2015/2016 El Nino as it did during the 1997/1998 El Nino. Ensemble model experiments are conducted to confirm the different climate impacts of the two El Ninos.
Journal of Climate | 2015
Jin-Yi Yu; Houk Paek; Eric S. Saltzman; Tong Lee
AbstractThis study uncovers an early 1990s change in the relationships between El Nino–Southern Oscillation (ENSO) and two leading modes of the Southern Hemisphere (SH) atmospheric variability: the southern annular mode (SAM) and the Pacific–South American (PSA) pattern. During austral spring, while the PSA maintained a strong correlation with ENSO throughout the period 1948–2014, the SAM–ENSO correlation changed from being weak before the early 1990s to being strong afterward. Through the ENSO connection, PSA and SAM became more in-phase correlated after the early 1990s. The early 1990s is also the time when ENSO changed from being dominated by the eastern Pacific (EP) type to being dominated by the central Pacific (CP) type. Analyses show that, while the EP ENSO can excite only the PSA, the CP ENSO can excite both the SAM and PSA through tropospheric and stratospheric pathway mechanisms. The more in-phase relationship between SAM and PSA impacted the post-1990s Antarctic climate in at least two aspects:...
Journal of Climate | 2012
Houk Paek; Huei Ping Huang
AbstractAn intercomparison of the global relative angular momentum MR in five reanalysis datasets, including the Twentieth Century Reanalysis (20CR), is performed for the second half of the twentieth century. The intercomparison forms a stringent test for 20CR because the variability of MR is known to be strongly influenced by the variability of upper-tropospheric zonal wind whereas 20CR assimilated only surface observations. The analysis reveals good agreement for decadal-to-multidecadal variability among all of the datasets, including 20CR, for the second half of the twentieth century. The discrepancies among different datasets are mainly in the slowest component, the long-term trend, of MR. Once the data are detrended, the resulting decadal-to-multidecadal variability shows even better agreement among all of the datasets. This result indicates that 20CR can be reliably used for the analysis of decadal-to-interdecadal variability in the pre-1950 era, provided that the data are properly detrended. As a q...
Theoretical and Applied Climatology | 2017
Tao Gao; Jin-Yi Yu; Houk Paek
The impacts of four teleconnection patterns on atmospheric circulation components over Eurasia and the Pacific region, from low to high latitudes in the Northern Hemisphere (NH), were investigated comprehensively in this study. The patterns, as identified by the Climate Prediction Center (USA), were the East Atlantic (EA), East Atlantic/Western Russia (EAWR), Polar/Eurasia (POLEUR), and Scandinavian (SCAND) teleconnections. Results indicate that the EA pattern is closely related to the intensity of the subtropical high over different sectors of the NH in all seasons, especially boreal winter. The wave train associated with this pattern serves as an atmospheric bridge that transfers Atlantic influence into the low-latitude region of the Pacific. In addition, the amplitudes of the EAWR, SCAND, and POLEUR patterns were found to have considerable control on the “Vangengeim–Girs” circulation that forms over the Atlantic–Eurasian region in winter or spring. The EA and EAWR mainly affect the westerlies in winter and spring and the POLEUR and SCAND, respectively, in summer and winter. Strong westerlies confine the extension of the North Polar vortex, which generally results in a small weak vortex and a shallow East Asian trough located in a position further east than normal. Furthermore, the North Polar vortex presents significant connections with the patterns during winter and summer. Analyses in this work suggest that the teleconnection patterns in summer could be driven, at least partly, by the Atlantic Multidecadal Oscillation, which to some degree might transmit the influence of the Atlantic Ocean to Eurasia and the Pacific region.
Journal of Climate | 2017
Kewei Lyu; Jin-Yi Yu; Houk Paek
AbstractThe Atlantic multidecadal oscillation (AMO) has been shown to be capable of exerting significant influences on the Pacific climate. In this study, the authors analyze reanalysis datasets and conduct forced and coupled experiments with an atmospheric general circulation model (AGCM) to explain why the winter North Pacific subtropical high strengthens and expands northwestward during the positive phase of the AMO. The results show that the tropical Atlantic warming associated with the positive AMO phase leads to a westward displacement of the Pacific Walker circulation and a cooling of the tropical Pacific Ocean, thereby inducing anomalous descending motion over the central tropical Pacific. The descending motion then excites a stationary Rossby wave pattern that extends northward to produce a nearly barotropic anticyclone over the North Pacific. A diagnosis based on the quasigeostrophic vertical velocity equation reveals that the stationary wave pattern also results in enhanced subsidence over the ...
Monthly Weather Review | 2015
Houk Paek; Jin-Yi Yu; Jyh-Wen Hwu; Mong-Ming Lu; Tao Gao
AbstractThis study reveals a possible cause of model bias in simulating the western Pacific subtropical high (WPSH) variability via an examination of an Atmospheric Model Intercomparison Project (AMIP) simulation produced by the atmospheric general circulation model (AGCM) developed at Taiwan’s Central Weather Bureau (CWB). During boreal summer, the model overestimates the quasi-biennial (2–3 yr) band of WPSH variability but underestimates the low-frequency (3–5 yr) band of variability. The overestimation of the quasi-biennial WPSH sensitivity is found to be due to the model’s stronger sensitivity to the central Pacific El Nino–Southern Oscillation (CP ENSO) that has a leading periodicity in the quasi-biennial band. The model underestimates the low-frequency WPSH variability because of its weaker sensitivity to the eastern Pacific (EP) ENSO that has a leading periodicity in the 3–5-yr band. These different model sensitivities are shown to be related to the relative strengths of the mean Hadley and Walker ...
Journal of Climate | 2013
Houk Paek; Huei Ping Huang
AbstractThe climatology and trend of atmospheric angular momentum from the phase 3 and the phase 5 Climate Model Intercomparison Project (CMIP3 and CMIP5, respectively) simulations are diagnosed and validated with the Twentieth Century Reanalysis (20CR). It is found that CMIP5 models produced a significantly smaller bias in the twentieth-century climatology of the relative MR and omega MΩ angular momentum compared to CMIP3. The CMIP5 models also produced a narrower ensemble spread of the climatology and trend of MR and MΩ. Both CMIP3 and CMIP5 simulations consistently produced a positive trend in MR and MΩ for the twentieth and twenty-first centuries. The trend for the twenty-first century is much greater, reflecting the role of greenhouse gas (GHG) forcing in inducing the trend. The simulated increase in MR for the twentieth century is consistent with reanalysis. Both CMIP3 and CMIP5 models produced a wide range of magnitudes of decadal and interdecadal variability of MR compared to 20CR. The ratio of th...
Environmental Research Letters | 2016
Andy K Li; Houk Paek; Jin-Yi Yu
Santa Ana wind (SAW) events have great implications for the environment of Southern California, but the cause of their decadal variability has not been fully understood. We show with observational analysis that the Atlantic multi-decadal oscillation (AMO) has a stronger influence than the Pacific decadal oscillation (PDO) in modulating SAW activity through two mechanisms: the Great Basin pressure gradient mechanism, in which a strengthened Great Basin high promotes SAW activity and vice versa through the northeast–southwest pressure gradient across Southern California, and the Pacific jetstream displacement mechanism, in which a strengthened Pacific subtropical high (PSH) prohibits mid-latitude cyclones from traveling toward California, consequently encouraging SAW development and vice versa. While the AMO strengthens or weakens both the Great Basin and PSHs to strongly modulate SAW activity through these two mechanisms, the PDO strengthens one of the highs but weakens the other, causing the two mechanisms to cancel each other, producing little influence on SAW activity. A projection based on the AMO and PDO indicates that the above-average SAW activity observed since the beginning of the 21st century is likely to terminate after 2016, after which Southern California may experience an extended period of below-average SAW activity through 2030.
Journal of Geophysical Research | 2012
Houk Paek; Huei Ping Huang