Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Houman Ashrafian is active.

Publication


Featured researches published by Houman Ashrafian.


Circulation | 2007

Metabolic Mechanisms in Heart Failure

Houman Ashrafian; Michael P. Frenneaux; Lionel H. Opie

Although neurohumoral antagonism has successfully reduced heart failure morbidity and mortality, the residual disability and death rate remains unacceptably high. Though abnormalities of myocardial metabolism are associated with heart failure, recent data suggest that heart failure may itself promote metabolic changes such as insulin resistance, in part through neurohumoral activation. A detrimental self-perpetuating cycle (heart failure --> altered metabolism --> heart failure) that promotes the progression of heart failure may thus be postulated. Accordingly, we review the cellular mechanisms and pathophysiology of altered metabolism and insulin resistance in heart failure. It is hypothesized that the ensuing detrimental myocardial energetic perturbations result from neurohumoral activation, increased adverse free fatty acid metabolism, decreased protective glucose metabolism, and in some cases insulin resistance. The result is depletion of myocardial ATP, phosphocreatine, and creatine kinase with decreased efficiency of mechanical work. On the basis of the mechanisms outlined, appropriate therapies to mitigate aberrant metabolism include intense neurohumoral antagonism, limitation of diuretics, correction of hypokalemia, exercise, and diet. We also discuss more novel mechanistic-based therapies to ameliorate metabolism and insulin resistance in heart failure. For example, metabolic modulators may optimize myocardial substrate utilization to improve cardiac function and exercise performance beyond standard care. The ultimate success of metabolic-based therapy will be manifest by its capacity further to lessen the residual mortality in heart failure.


Circulation | 2005

Metabolic Modulation With Perhexiline in Chronic Heart Failure: A Randomized, Controlled Trial of Short-Term Use of a Novel Treatment

Leong Lee; Ross T. Campbell; Michaela Scheuermann-Freestone; Rachel Taylor; Prasad Gunaruwan; Lynne Williams; Houman Ashrafian; John D. Horowitz; Alan Gordon Fraser; Kieran Clarke; Michael P. Frenneaux

Background— Chronic heart failure (CHF) is a major cause of morbidity and mortality that requires a novel approach to therapy. Perhexiline is an antianginal drug that augments glucose metabolism by blocking muscle mitochondrial free fatty acid uptake, thereby increasing metabolic efficiency. We assessed the effects of perhexiline treatment in CHF patients. Methods and Results— In a double-blind fashion, we randomly assigned patients with optimally medicated CHF to either perhexiline (n=28) or placebo (n=28). The primary end point was peak exercise oxygen consumption (&OV0312;o2max), an important prognostic marker. In addition, the effect of perhexiline on myocardial function and quality of life was assessed. Quantitative stress echocardiography with tissue Doppler measurements was used to assess regional myocardial function in patients with ischemic CHF. 31P magnetic resonance spectroscopy was used to assess the effect of perhexiline on skeletal muscle energetics in patients with nonischemic CHF. Treatment with perhexiline led to significant improvements in &OV0312;o2max (16.1±0.6 to 18.8±1.1 mL · kg−1 · min−1; P<0.001), quality of life (Minnesota score reduction from 45±5 to 34±5; P=0.04), and left ventricular ejection fraction (24±1% to 34±2%; P<0.001). Perhexiline treatment also increased resting and peak dobutamine stress regional myocardial function (by 15% and 24%, respectively) and normalized skeletal muscle phosphocreatine recovery after exercise. There were no adverse effects during the treatment period. Conclusions— In patients with CHF, metabolic modulation with perhexiline improved &OV0312;o2max, left ventricular ejection fraction, symptoms, resting and peak stress myocardial function, and skeletal muscle energetics. Perhexiline may therefore represent a novel treatment for CHF with a good safety profile, provided that the dosage is adjusted according to plasma levels.


Circulation | 2010

Metabolic Modulator Perhexiline Corrects Energy Deficiency and Improves Exercise Capacity in Symptomatic Hypertrophic Cardiomyopathy

Khalid Abozguia; Perry M. Elliott; William J. McKenna; Thanh Trung Phan; Ganesh Nallur-Shivu; Ibrar Ahmed; Abdul R. Maher; Kulvinder Kaur; Jenny C. Taylor; A Henning; Houman Ashrafian; Hugh Watkins; Michael P. Frenneaux

Background— Hypertrophic cardiomyopathy patients exhibit myocardial energetic impairment, but a causative role for this energy deficiency in the pathophysiology of hypertrophic cardiomyopathy remains unproven. We hypothesized that the metabolic modulator perhexiline would ameliorate myocardial energy deficiency and thereby improve diastolic function and exercise capacity. Methods and Results— Forty-six consecutive patients with symptomatic exercise limitation (peak &OV0312;o2 <75% of predicted) caused by nonobstructive hypertrophic cardiomyopathy (mean age, 55±0.26 years) were randomized to perhexiline 100 mg (n=24) or placebo (n=22). Myocardial ratio of phosphocreatine to adenosine triphosphate, an established marker of cardiac energetic status, as measured by 31P magnetic resonance spectroscopy, left ventricular diastolic filling (heart rate normalized time to peak filling) at rest and during exercise using radionuclide ventriculography, peak &OV0312;o2, symptoms, quality of life, and serum metabolites were assessed at baseline and study end (4.6±1.8 months). Perhexiline improved myocardial ratios of phosphocreatine to adenosine triphosphate (from 1.27±0.02 to 1.73±0.02 versus 1.29±0.01 to 1.23±0.01; P=0.003) and normalized the abnormal prolongation of heart rate normalized time to peak filling between rest and exercise (0.11±0.008 to −0.01±0.005 versus 0.15±0.007 to 0.11±0.008 second; P=0.03). These changes were accompanied by an improvement in primary end point (peak &OV0312;o2) (22.2±0.2 to 24.3±0.2 versus 23.6±0.3 to 22.3±0.2 mL · kg−1 · min−1; P=0.003) and New York Heart Association class (P<0.001) (all P values ANCOVA, perhexiline versus placebo). Conclusions— In symptomatic hypertrophic cardiomyopathy, perhexiline, a modulator of substrate metabolism, ameliorates cardiac energetic impairment, corrects diastolic dysfunction, and increases exercise capacity. This study supports the hypothesis that energy deficiency contributes to the pathophysiology and provides a rationale for further consideration of metabolic therapies in hypertrophic cardiomyopathy. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT00500552.


Journal of the American College of Cardiology | 2009

Heart Failure With Preserved Ejection Fraction Is Characterized by Dynamic Impairment of Active Relaxation and Contraction of the Left Ventricle on Exercise and Associated With Myocardial Energy Deficiency

Thanh Trung Phan; Khalid Abozguia; Ganesh Nallur Shivu; Gnanadevan Mahadevan; Ibrar Ahmed; Lynne Williams; Girish Dwivedi; Kiran Patel; Paul Steendijk; Houman Ashrafian; A Henning; Michael P. Frenneaux

OBJECTIVES We sought to evaluate the role of exercise-related changes in left ventricular (LV) relaxation and of LV contractile function and vasculoventricular coupling (VVC) in the pathophysiology of heart failure with preserved ejection fraction (HFpEF) and to assess myocardial energetic status in these patients. BACKGROUND To date, no studies have investigated exercise-related changes in LV relaxation and VVC as well as in vivo myocardial energetic status in patients with HFpEF. METHODS We studied 37 patients with HFpEF and 20 control subjects. The VVC and time to peak LV filling (nTTPF, a measure of LV active relaxation) were assessed while patients were at rest and during exercise by the use of radionuclide ventriculography. Cardiac energetic status (creatine phosphate/adenosine triphosphate ratio) was assessed by the use of (31)P magnetic resonance spectroscopy at 3-T. RESULTS When patients were at rest, nTTPF and VVC were similar in patients with HFpEF and control subjects. The cardiac creatine phosphate/adenosine triphosphate ratio was reduced in patients with HFpEF versus control subjects (1.57 +/- 0.52 vs. 2.14 +/- 0.63; p = 0.003), indicating reduced energy reserves. Peak maximal oxygen uptake and the increase in heart rate during maximal exercise were lower in patients with HFpEF versus control subjects (19 +/- 4 ml/kg/min vs. 36 +/- 8 ml/kg/min, p < 0.001, and 52 +/- 16 beats/min vs. 81 +/- 14 beats/min, p < 0.001). The relative changes in stroke volume and cardiac output during submaximal exercise were lower in patients with HFpEF versus control subjects (ratio exercise/rest: 0.99 +/- 0.34 vs. 1.25 +/- 0.47, p = 0.04, and 1.36 +/- 0.45 vs. 2.13 +/- 0.72, p < 0.001). The nTTPF decreased during exercise in control subjects but increased in patients with HFpEF (-0.03 +/- 12 s vs. +0.07 +/- 0.11 s; p = 0.005). The VVC decreased on exercise in control subjects but was unchanged in patients with HFpEF (-0.01 +/- 0.15 vs. -0.25 +/- 0.19; p < 0.001). CONCLUSIONS Patients with HFpEF have reduced cardiac energetic reserve that may underlie marked dynamic slowing of LV active relaxation and abnormal VVC during exercise.


Journal of Biological Chemistry | 2008

Tissue processing of nitrite in hypoxia : an intricate interplay of nitric oxide-generating and -scavenging systems

Martin Feelisch; Bernadette O. Fernandez; Nathan S. Bryan; Maria Francisca Garcia-Saura; Selena Bauer; David R. Whitlock; Peter C. Ford; David R. Janero; Juan Rodriguez; Houman Ashrafian

Although nitrite (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document}) and nitrate (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document}) have been considered traditionally inert byproducts of nitric oxide (NO) metabolism, recent studies indicate that \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} represents an important source of NO for processes ranging from angiogenesis through hypoxic vasodilation to ischemic organ protection. Despite intense investigation, the mechanisms through which \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} exerts its physiological/pharmacological effects remain incompletely understood. We sought to systematically investigate the fate of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} in hypoxia from cellular uptake in vitro to tissue utilization in vivo using the Wistar rat as a mammalian model. We find that most tissues (except erythrocytes) produce free NO at rates that are maximal under hypoxia and that correlate robustly with each tissues capacity for mitochondrial oxygen consumption. By comparing the kinetics of NO release before and after ferricyanide addition in tissue homogenates to mathematical models of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} reduction/NO scavenging, we show that the amount of nitrosylated products formed greatly exceeds what can be accounted for by NO trapping. This difference suggests that such products are formed directly from \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document}, without passing through the intermediacy of free NO. Inhibitor and subcellular fractionation studies indicate that \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document} reductase activity involves multiple redundant enzymatic systems (i.e. heme, iron-sulfur cluster, and molybdenum-based reductases) distributed throughout different cellular compartments and acting in concert to elicit NO signaling. These observations hint at conserved roles for the \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{2}^{-}\) \end{document}-NO pool in cellular processes such as oxygen-sensing and oxygen-dependent modulation of intermediary metabolism.


Circulation | 2008

Hypoxic Modulation of Exogenous Nitrite-Induced Vasodilation in Humans

Abdul R. Maher; Alexandra B. Milsom; Prasad Gunaruwan; Khalid Abozguia; Ibrar Ahmed; Rebekah Weaver; Philip Thomas; Houman Ashrafian; Gustav V.R. Born; Philip E. James; Michael P. Frenneaux

Background— It has been proposed that under hypoxic conditions, nitrite may release nitric oxide, which causes potent vasodilation. We hypothesized that nitrite would have a greater dilator effect in capacitance than in resistance vessels because of lower oxygen tension and that resistance-vessel dilation should become more pronounced during hypoxemia. The effect of intra-arterial infusion of nitrite on forearm blood flow and forearm venous volumes was assessed during normoxia and hypoxia. Methods and Results— Forty healthy volunteers were studied. After baseline infusion of 0.9% saline, sodium nitrite was infused at incremental doses from 40 nmol/min to 7.84 &mgr;mol/min. At each stage, forearm blood flow was measured by strain-gauge plethysmography. Forearm venous volume was assessed by radionuclide plethysmography. Changes in forearm blood flow and forearm venous volume in the infused arm were corrected for those in the control arm. The peak percentage of venodilation during normoxia was 35.8±3.4% (mean±SEM) at 7.84 &mgr;mol/min (P<0.001) and was similar during hypoxia. In normoxia, arterial blood flow, assessed by the forearm blood flow ratio, increased from 1.04±0.09 (baseline) to 1.62±0.18 (nitrite; P<0.05) versus 1.07±0.09 (baseline) to 2.37±0.15 (nitrite; P<0.005) during hypoxia. This result was recapitulated in vitro in vascular rings. Conclusions— Nitrite is a potent venodilator in normoxia and hypoxia. Arteries are modestly affected in normoxia but potently dilated in hypoxia, which suggests the important phenomenon of hypoxic augmentation of nitrite-mediated vasodilation in vivo. The use of nitrite as a selective arterial vasodilator in ischemic territories and as a potent venodilator in heart failure has therapeutic implications.


Heart | 2007

Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs

Gyorgy Andreka; Marton Vertesaljai; Gergely Szantho; Gusztav Font; Zsolt Piroth; Eszter Juhász; László Székely; Zsolt Szelid; Mark Turner; Houman Ashrafian; Michael P. Frenneaux; Péter Andréka

Background: Ischaemic preconditioning results in a reduction in ischaemic-reperfusion injury to the heart. This beneficial effect is seen both with direct local preconditioning of the myocardium and with remote preconditioning of easily accessible distant non-vital limb tissue. Ischaemic postconditioning with a comparable sequence of brief periods of local ischaemia, when applied immediately after the ischaemic insult, confers benefits similar to preconditioning. Objective: To test the hypothesis that limb ischaemia induces remote postconditioning and hence reduces experimental myocardial infarct size in a validated swine model of acute myocardial infarction. Methods: Acute myocardial infarction was induced in 24 pigs with 90 min balloon inflations of the left anterior descending coronary artery. Remote ischaemic postconditioning was induced in 12 of the pigs by four 5 min cycles of blood pressure cuff inflation applied to the lower limb immediately after the balloon deflation. Infarct size was assessed by measuring 72 h creatinine kinase release, MRI scan and immunohistochemical analysis. Results: Area under the curve of creatinine kinase release was significantly reduced in the postconditioning group compared with the control group with a 26% reduction in the infarct size (p<0.05). This was confirmed by MRI scanning and immunohistochemical analysis that revealed a 22% (p<0.05) and a 47.52% (p<0.01) relative reduction in the infarct size, respectively. Conclusion: Remote ischaemic postconditioning is a simple technique to reduce infarct size without the hazards and logistics of multiple coronary artery balloon inflations. This type of conditioning promises clear clinical potential.


Cell Metabolism | 2012

Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway

Houman Ashrafian; Gabor Czibik; Mohamed Bellahcene; Dunja Aksentijevic; Anthony C. Smith; Sarah J. Mitchell; Michael S. Dodd; Jennifer A. Kirwan; Jonathan J. Byrne; Christian Ludwig; Henrik Isackson; Arash Yavari; Nicolaj B. Støttrup; Hussain Contractor; Thomas J. Cahill; Natasha Sahgal; Daniel R. Ball; Rune Isak Dupont Birkler; Iain Hargreaves; Daniel A. Tennant; John M. Land; Craig A. Lygate; Mogens Johannsen; Rajesh K. Kharbanda; Stefan Neubauer; Charles Redwood; Rafael de Cabo; Ismayil Ahmet; Mark I. Talan; Ulrich L. Günther

Summary The citric acid cycle (CAC) metabolite fumarate has been proposed to be cardioprotective; however, its mechanisms of action remain to be determined. To augment cardiac fumarate levels and to assess fumarates cardioprotective properties, we generated fumarate hydratase (Fh1) cardiac knockout (KO) mice. These fumarate-replete hearts were robustly protected from ischemia-reperfusion injury (I/R). To compensate for the loss of Fh1 activity, KO hearts maintain ATP levels in part by channeling amino acids into the CAC. In addition, by stabilizing the transcriptional regulator Nrf2, Fh1 KO hearts upregulate protective antioxidant response element genes. Supporting the importance of the latter mechanism, clinically relevant doses of dimethylfumarate upregulated Nrf2 and its target genes, hence protecting control hearts, but failed to similarly protect Nrf2-KO hearts in an in vivo model of myocardial infarction. We propose that clinically established fumarate derivatives activate the Nrf2 pathway and are readily testable cytoprotective agents.


PLOS Genetics | 2010

A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy

Houman Ashrafian; Louise Docherty; Vincenzo C. Leo; Christopher Towlson; Monica Neilan; Violetta Steeples; Craig A. Lygate; Tertius Hough; Stuart Townsend; Debbie Williams; Sara Wells; Dominic P. Norris; Sarah Glyn-Jones; John M. Land; Ivana Barbaric; Zuzanne Lalanne; Paul Denny; Dorota Szumska; Shoumo Bhattacharya; Julian L. Griffin; Iain Hargreaves; Narcis Fernandez-Fuentes; Michael Cheeseman; Hugh Watkins; T. Neil Dear

Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease.


Circulation Research | 2011

Disease Pathways and Novel Therapeutic Targets in Hypertrophic Cardiomyopathy

Houman Ashrafian; William J. McKenna; Hugh Watkins

As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca(2+) sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca(2+) handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.

Collaboration


Dive into the Houman Ashrafian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodoros D. Karamitsos

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge