Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Houman Homayoun is active.

Publication


Featured researches published by Houman Homayoun.


The Journal of Neuroscience | 2007

NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons

Houman Homayoun; Bita Moghaddam

NMDA receptors mediate excitatory postsynaptic potentials throughout the brain but, paradoxically, NMDA receptor antagonists produce cortical excitation in humans and behaving rodents. To elucidate a mechanism for these diverging effects, we examined the effect of use-dependent inhibition of NMDA receptors on the spontaneous activity of putative GABA interneurons and pyramidal neurons in the prefrontal cortex of awake rats. We find that inhibition of NMDA receptors predominately decreases the activity of putative GABA interneurons but, at a delayed rate, increases the firing rate of the majority of pyramidal neurons. Thus, NMDA receptors preferentially drive the activity of cortical inhibitory interneurons suggesting that NMDA receptor inhibition causes cortical excitation by disinhibition of pyramidal neurons. These findings support the hypothesis that NMDA receptor hypofunction, which has been implicated in the pathophysiology of schizophrenia, diminishes the inhibitory control of PFC output neurons. Reducing this effect may be critical for treatment of schizophrenia.


Neuropsychopharmacology | 2004

Functional Interaction Between NMDA and mGlu5 Receptors: Effects on Working Memory, Instrumental Learning, Motor Behaviors, and Dopamine Release

Houman Homayoun; Mark R. Stefani; Barbara W. Adams; Gilles D Tamagan; Bita Moghaddam

Pharmacological manipulation of N-methyl-D-aspartate (NMDA) receptors may be critical for the treatment of many neurological and psychiatric disorders. Metabotropic glutamate (mGlu5) receptors are abundant in corticolimbic circuitry, where they modulate NMDA receptor-mediated signal transduction. Therefore, pharmacological manipulation of mGlu5 receptor may provide a treatment strategy for cognitive disorders that are associated with NMDA receptor dysfunction. We sought to determine whether the recently described molecular and cellular interactions between NMDA and mGlu5 receptors coregulate higher order behaviors. We examined the interaction of the selective mGlu5 receptor antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and the use-dependent NMDA antagonist MK-801, on locomotion, stereotypy, working memory, instrumental learning, and corticolimbic dopamine release. MPEP, at 10 mg/kg, but not 3 mg/kg, impaired working memory and instrumental learning, transiently increased dopamine release in prefrontal cortex and nucleus accumbens, and augmented the effect of MK-801 on cortical dopamine release, locomotion, and stereotypy. Pretreatment with 3 mg/kg of MPEP enhanced the detrimental effects of MK-801 on cognition. These results demonstrate that an mGlu5 receptor antagonist can potentiate the motoric, cognitive, and dopaminergic effects of an NMDA receptor antagonist. Thus, mGlu5 receptors appear to play a major role in regulating NMDA receptor-dependent cognitive functions such as learning and working memory. By extension, these results suggest that pharmacological potentiation of mGlu5 receptors may ameliorate the cognitive and other behavioral abnormalities associated with NMDA receptor deficiency.


Biological Psychiatry | 2007

Positive Allosteric Modulation of Metabotropic Glutamate 5 (mGlu5) Receptors Reverses N-Methyl-D-Aspartate Antagonist-Induced Alteration of Neuronal Firing in Prefrontal Cortex

Lucas Lecourtier; Houman Homayoun; Gilles Tamagnan; Bita Moghaddam

BACKGROUND Several lines of evidence suggest that N-methyl-D-aspartate (NMDA) receptor hypofunction may be associated with schizophrenia. Activation of metabotropic glutamate 5 (mGlu5) receptors enhances NMDA receptor mediated currents in vitro, implying that allosteric modulation of mGlu5 receptors may have therapeutic efficacy for schizophrenia. The aim of this study was to determine if positive allosteric modulators of mGlu5 receptors are effective in reversing two cellular effects of NMDA receptor antagonists that are relevant to schizophrenia: increases in corticolimbic dopamine neurotransmission and disruption of neuronal activity in the prefrontal cortex (PFC). METHODS In freely moving rats, we measured the effects of the positive modulator of mGlu5 receptor 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) alone or in combination with the NMDA antagonist MK801 on 1) spontaneous firing and bursting of medial PFC (mPFC) neurons, and 2) dopamine release as measured by microdialysis in the mPFC and nucleus accumbens (NAc). RESULTS The predominant effect of CDPPB on mPFC neurons was excitatory, leading to an overall excitatory population response. Pretreatment with CDPPB prevented MK801-induced excessive firing and reduced spontaneous bursting. In contrast, CDPPB had no significant effect on basal dopamine release as compared with control rats and did not alter MK801-induced activation of dopamine release in the mPFC and NAc. CONCLUSIONS These results show that positive modulation of mGlu5 receptors reverses the effects of noncompetitive NMDA antagonists on cortical neuronal firing without affecting dopamine neurotransmission. Thus, these compounds may be effective in ameliorating PFC mediated behavioral abnormalities that results from NMDA receptor hypofunction.


Neuropsychopharmacology | 2008

Divergent plasticity of prefrontal cortex networks

Bita Moghaddam; Houman Homayoun

The ‘executive’ regions of the prefrontal cortex (PFC) such as the dorsolateral PFC (dlPFC) and its rodent equivalent medial PFC (mPFC) are thought to respond in concert with the ‘limbic’ regions of the PFC such as the orbitofrontal (OFC) cortex to orchestrate behavior that is consistent with context and expected outcome. Both groups of regions have been implicated in behavioral abnormalities associated with addiction and psychiatric disorders, in particular, schizophrenia and mood disorders. Theories about the pathophysiology of these disorders, however, incorporate abnormalities in discrete PFC regions independently of each other or assume they are one and the same and, thus, bunch them under umbrella of ‘PFC dysfunction.’ Emerging data from animal studies suggest that mPFC and OFC neurons display opposing patterns of plasticity during associative learning and in response to repeated exposure to psychostimulants. These data corroborate clinical studies reporting different patterns of activation in OFC versus dlPFC in individuals with schizophrenia or addictive disorders. These suggest that concomitant but divergent engagement of discrete PFC regions is critical for learning stimulus-outcome associations, and the execution of goal-directed behavior that is based on these associations. An atypical interplay between these regions may lead to abnormally high or low salience assigned to stimuli, resulting in symptoms that are fundamental to many psychiatric and addictive disorders, including attentional deficits, improper affective response to stimuli, and inflexible or impulsive behavior.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs.

Houman Homayoun; Bita Moghaddam

Until recently, all known antipsychotic drugs were thought to block the dopamine D2 receptor. New evidence that agonists of the metabotropic glutamate 2/3 (mGlu2/3) receptors ameliorate psychotic and affective symptoms of schizophrenia suggests that compounds with different molecular targets may act on a common cellular target to treat schizophrenia. We hypothesized that normalizing the activity of neurons in the orbitofrontal cortex (OFC), a region that is increasingly implicated in the pathophysiology of schizophrenia, presents such a target. We disrupted OFC activity in behaving rats with a use-dependent NMDA antagonist to model the NMDA hypofunction state that may occur in schizophrenia. This systemic treatment increased the activity of most pyramidal cells while inhibiting the activity of putative inhibitory GABA interneurons and increasing behavioral stereotypy. A similar pattern of OFC firing disruption was observed after amphetamine, which models a dopamine hyperactivity state in schizophrenia and which produces a pattern of firing disruption different from those of NMDA antagonists in other prefrontal cortex regions. Antipsychotic drugs haloperidol and clozapine, which target monoamine receptors, as well as an mGlu2/3 agonist and an mGlu5 receptor modulator proposed to have antipsychotic efficacy, reversed the impact of NMDA hypofunction on OFC cells and on behavior. A similar pattern of normalization of OFC activity was observed when treatments were given after amphetamine. Thus, proven or putative antipsychotic drugs with different mechanisms of action similarly reduced the impact of NMDA hypofunction and dopamine hyperfunction on OFC neurons, suggesting that these neurons are a candidate target for the therapeutic effects of antipsychotic medications.


The Journal of Neuroscience | 2006

Progression of Cellular Adaptations in Medial Prefrontal and Orbitofrontal Cortex in Response to Repeated Amphetamine

Houman Homayoun; Bita Moghaddam

Recent theories on addiction implicate adaptive changes in prefrontal cortex (PFC) neurons in reinforcing and psychotomimetic properties of psychostimulants, yet little is known about how neuronal responses to these drugs change over time. Here we describe electrophysiological evidence for a progressive and sustained change in the response of PFC neurons to amphetamine during repeated exposure. In spontaneously behaving rats and in rats engaged in an instrumental responding task, we followed the activity of medial PFC (mPFC) and orbitofrontal cortex (OFC) neurons during daily exposure to amphetamine and after a post-withdrawal challenge. Repeated amphetamine increased the number of responsive neurons and the magnitude of responses and modified spontaneous burst patterns. These changes were apparent after a few exposures to amphetamine, were amplified after withdrawal, and were region specific in that repeated amphetamine increasingly produced inhibitory responses in mPFC and excitatory responses in OFC. In behaviorally engaged animals, the gradual enhancement in mPFC inhibition and OFC overactivation correlated with a progressive impairment of instrumental responding. Furthermore, these changes were evident predominately in neurons that displayed phasic responses during task-related events. These rapid-onset and sustained cellular adaptations suggest that even limited exposure to psychostimulants may reduce the influence of mPFC neurons on behavior while at the same time exaggerating information encoded by OFC neurons.


European Journal of Pharmacology | 2010

Group 5 metabotropic glutamate receptors: Role in modulating cortical activity and relevance to cognition

Houman Homayoun; Bita Moghaddam

Group 5 metabotropic glutamate (mGlu(5)) receptors are abundant in forebrain and limbic regions and provide a novel pharmacological target for modulation of cognition. Here, we review recent advances in understanding the electrophysiology of these receptors which reveal a role for mGlu(5) receptors in the regulation of tonic and bursting modes of neuronal firing, maintenance of distinct forms of synaptic plasticity, and reversal of detrimental effects of NMDA receptor antagonism on cortical neuronal activity. Furthermore, recordings using recently developed positive allosteric modulators of the mGlu(5) receptor suggest that these agents have an electrophysiological profile comparable to the antipsychotic agent clozapine. These findings, in conjunction with behavioral evidence from preclinical studies of cognition, suggest a potential precognitive profile for the mGlu(5) receptor potentiators.


Biological Psychiatry | 2007

Fine-Tuning of Awake Prefrontal Cortex Neurons by Clozapine: Comparison With Haloperidol and N-Desmethylclozapine

Houman Homayoun; Bita Moghaddam

BACKGROUND Mechanisms underlying clozapines better clinical efficacy in schizophrenia remain poorly understood. The prefrontal cortex (PFC) has been implicated as a primary site for the therapeutic effects of clozapine; however, evidence for how clozapine influences the activity of PFC neurons in behaviorally relevant contexts is lacking. METHODS Ensemble single unit recording in awake rats was used to measure the activity of PFC neurons in response to clozapine, its main metabolite N-desmethylclozapine (DMClz), and the typical antipsychotic drug haloperidol during baseline conditions and after treatment with the N-methyl-D-aspartate antagonist MK801. Behavioral stereotypy was scored during recording. RESULTS Clozapine and DMClz but not haloperidol had an activity-dependent influence on spontaneous firing rate of PFC cells: they increased the activity of neurons with low baseline firing rates and decreased the activity of neurons with higher firing rates. Clozapine and DMClz but not haloperidol also reversed the effect of MK801 on PFC neuronal firing. This reversal was strongly correlated with blockade of MK801-induced behavioral stereotypy. CONCLUSIONS These findings indicate that clozapine has the capacity to fine-tune spontaneous and disrupted activity of PFC neurons. This effect might contribute, in part, to the therapeutic efficacy of clozapine in schizophrenia.


Neuromuscular Disorders | 2011

Novel mutation in MYH7 gene associated with distal myopathy and cardiomyopathy.

Houman Homayoun; Simin Khavandgar; Jacqueline M. Hoover; Al-Walid Mohsen; Jerry Vockley; David Lacomis; Paula R. Clemens

A 25-year-old woman had childhood-onset muscle weakness and dilated cardiomyopathy. She exhibited predominantly distal weakness with early toe walking. Dilated cardiomyopathy required cardiac transplantation at age 15 years. We identified a de-novo, heterozygous, missense mutation, c.2348G>C (p. Arg783Pro), in exon 21 of the MYH7 gene, which encodes slow skeletal muscle fiber/β-cardiac myosin heavy chain protein, that replaces a highly conserved arginine with a proline. This novel mutation that results in the unusual combined cardiac and skeletal muscle phenotype localizes to the essential light chain binding area, a region only previously shown to be mutated in hypertrophic cardiomyopathy.


European Journal of Neuroscience | 2009

Differential representation of Pavlovian-instrumental transfer by prefrontal cortex subregions and striatum.

Houman Homayoun; Bita Moghaddam

Environmental cues that once predicted reward can restore extinguished behavior directed toward that reward. This process may be modeled by the Pavlovian–instrumental transfer (PIT) paradigm where a previously learned Pavlovian conditioned stimulus (CS) elicits a representation of the reward associated with that CS, prompts motivation toward the absent reward, and triggers an instrumental action. We recorded in the medial and orbital prefrontal cortex (mPFC and OFC) and dorsal striatum (DS) of freely moving rats during PIT and found that a Pavlovian CS, as compared with neutral or no stimuli, amplified the phasic neuronal responses to instrumental nosepokes (‘transfer’ event). In mPFC and OFC, but not the DS, representation of the transfer event correlated with the strength of PIT behavior. Neurons in all three regions showed CS‐selective amplification of Pavlovian approaches toward the reward delivery site. Whereas striatal neurons represented transfer and approach behavior through mostly segregated neuronal subsets, overlapping subsets represented these events in the mPFC and OFC. These findings suggest that parallel phasic activation of mPFC and OFC neuronal subsets participates in the transfer from Pavlovian incentives to instrumental actions.

Collaboration


Dive into the Houman Homayoun's collaboration.

Top Co-Authors

Avatar

Bita Moghaddam

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Bok Kim

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher G. Goetz

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Lacomis

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge