Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Houping Wang is active.

Publication


Featured researches published by Houping Wang.


Plant Journal | 2013

Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance

Yanru Hu; Ligang Chen; Houping Wang; Liping Zhang; Fang Wang; Diqiu Yu

The WRKY transcription factors have been demonstrated to play crucial roles in regulating stress responses; however, the exact mechanisms underlying their involvement in stress responses are not fully understood. Arabidopsis WRKY8 was predominantly expressed in roots and was highly upregulated by salt treatment. Disruption of WRKY8 rendered plants hypersensitive to salt, showing delayed germination, inhibited post-germination development and accelerated chlorosis. Further investigation revealed that WRKY8 interacted with VQ9, and their interaction decreased the DNA-binding activity of WRKY8. The VQ9 protein was exclusively localized in the nucleus, and VQ9 expression was strongly responsive to NaCl treatment. Mutation of VQ9 enhanced tolerance to salt stress, indicating that VQ9 acts antagonistically with WRKY8 to mediate responses to salt stress. The antagonist functions of WRKY8 and VQ9 were consistent with an increased or reduced Na⁺/K⁺ concentration ratio, as well as contrasting expression patterns of downstream stress-responsive genes in salt-stressed wrky8 and vq9 mutants. Moreover, chromatin immunoprecipitation (ChIP) assays showed that WRKY8 directly bound the promoter of RD29A under salt conditions. These results provided strong evidence that the VQ9 protein acts as a repressor of the WRKY8 factor to maintain an appropriate balance of WRKY8-mediated signaling pathways to establish salinity stress tolerance.


Journal of Experimental Botany | 2017

Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones.

Yanru Hu; Yanjuan Jiang; Xiao Han; Houping Wang; Jinjing Pan; Diqiu Yu

Plants are challenged with numerous abiotic stresses, such as drought, cold, heat, and salt stress. These environmental stresses are major causes of crop failure and reduced yields worldwide. Phytohormones play essential roles in regulating various plant physiological processes and alleviating stressful perturbations. Jasmonate (JA), a group of oxylipin compounds ubiquitous in the plant kingdom, acts as a crucial signal to modulate multiple plant processes. Recent studies have shown evidence supporting the involvement of JA in leaf senescence and tolerance to cold stress. Concentrations of JA are much higher in senescent leaves compared with those in non-senescent ones. Treatment with exogenous JA induces leaf senescence and expression of senescence-associated genes. In response to cold stress, exogenous application of JA enhances Arabidopsis freezing tolerance with or without cold acclimation. Consistently, biosynthesis of endogenous JA is activated in response to cold exposure. JA positively regulates the CBF (C-REPEAT BINDING FACTOR) transcriptional pathway to up-regulate downstream cold-responsive genes and ultimately improve cold tolerance. JA interacts with other hormone signaling pathways (such as auxin, ethylene, and gibberellin) to regulate leaf senescence and tolerance to cold stress. In this review, we summarize recent studies that have provided insights into JA-mediated leaf senescence and cold-stress tolerance.


Plant Physiology | 2016

The DELLA-CONSTANS Transcription Factor Cascade Integrates Gibberellic Acid and Photoperiod Signaling to Regulate Flowering

Houping Wang; Jinjing Pan; Yang Li; Dengji Lou; Yanru Hu; Diqiu Yu

DELLA proteins physically and genetically interact with CO to modulate flowering under long-days in Arabidopsis. Gibberellin (GA) and photoperiod pathways have recently been demonstrated to collaboratively modulate flowering under long days (LDs). However, the molecular mechanisms underlying this collaboration remain largely unclear. In this study, we found that GA-induced expression of FLOWERING LOCUS T (FT) under LDs was dependent on CONSTANS (CO), a critical transcription factor positively involved in photoperiod signaling. Mechanistic investigation revealed that DELLA proteins, a group of crucial repressors in GA signaling, physically interacted with CO. The DELLA-CO interactions repressed the transcriptional function of CO protein. Genetic analysis demonstrated that CO acts downstream of DELLA proteins to regulate flowering. Disruption of CO rescued the earlier flowering phenotype of the gai-t6 rga-t2 rgl1-1 rgl2-1 mutant (dellap), while a gain-of-function mutation in GA INSENSITIVE (GAI, a member of the DELLA gene) repressed the earlier flowering phenotype of CO-overexpressing plants. In addition, the accumulation of DELLA proteins and mRNAs was rhythmic, and REPRESSOR OF GA1-3 protein was noticeably decreased in the long-day afternoon, a time when CO protein is abundant. Collectively, these results demonstrate that the DELLA-CO cascade inhibits CO/FT-mediated flowering under LDs, which thus provide evidence to directly integrate GA and photoperiod signaling to synergistically modulate flowering under LDs.


Molecular Plant | 2016

Arabidopsis WRKY Transcription Factors WRKY12 and WRKY13 Oppositely Regulate Flowering under Short-Day Conditions

Wei Li; Houping Wang; Diqiu Yu

In plants, photoperiod is an important cue for determining flowering. The floral transition in Arabidopsis thaliana is earlier under long-day (LD) than under short-day (SD) conditions. Flowering of Arabidopsis plants under SD conditions is mainly regulated by the plant hormone gibberellin (GA). Here, we report two WRKY transcription factors function oppositely in controlling flowering time under SD conditions. Phenotypic analysis showed that disruption of WRKY12 caused a delay in flowering, while loss of WRKY13 function promoted flowering. WRKY12 and WRKY13 displayed negatively correlated expression profiles and function successively to regulate flowering. Molecular and genetic analyses demonstrated that FRUITFULL (FUL) is a direct downstream target gene of WRKY12 and WRKY13. Interestingly, we found that DELLA proteins GIBBERELLIN INSENSITIVE (GAI) and RGA-LIKE1 (RGL1) interacted with WRKY12 and WRKY13, and their interactions interfered with the transcriptional activity of the WRKY12 and WRKY13. Further studies suggested thatWRKY12 and WRKY13 partly mediated the effect of GA3 on controlling flowering time. Taken together, our results indicate that WRKY12 and WRKY13 oppositely modulate flowering time under SD conditions, which at least partially involves the action of GA.


Scientific Reports | 2015

Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea

Houping Wang; Yanru Hu; Jinjing Pan; Diqiu Yu

Arabidopsis VQ motif-containing proteins have recently been demonstrated to interact with several WRKY transcription factors; however, their specific biological functions and the molecular mechanisms underlying their involvement in defense responses remain largely unclear. Here, we showed that two VQ genes, VQ12 and VQ29, were highly responsive to the necrotrophic fungal pathogen Botrytis cinerea. To characterize their roles in plant defense, we generated amiR-vq12 transgenic plants by using an artificial miRNA approach to suppress the expression of VQ12, and isolated a loss-of-function mutant of VQ29. Phenotypic analysis showed that decreasing the expression of VQ12 and VQ29 simultaneously rendered the amiR-vq12 vq29 double mutant plants resistant against B. cinerea. Consistently, the B. cinerea-induced expression of defense-related PLANT DEFENSIN1.2 (PDF1.2) was increased in amiR-vq12 vq29. In contrast, constitutively-expressing VQ12 or VQ29 confered transgenic plants susceptible to B. cinerea. Further investigation revealed that VQ12 and VQ29 physically interacted with themselves and each other to form homodimers and heterodimer. Moreover, expression analysis of VQ12 and VQ29 in defense-signaling mutants suggested that they were partially involved in jasmonate (JA)-signaling pathway. Taken together, our study indicates that VQ12 and VQ29 negatively regulate plant basal resistance against B. cinerea.


Frontiers in Plant Science | 2017

OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice

Dengji Lou; Houping Wang; Gang Liang; Diqiu Yu

SNF 1-RELATED PROTEIN KINASE 2 (SnRK2) is a family of plant-specific protein kinases which is the key regulator of hyper-osmotic stress signaling and abscisic acid (ABA)-dependent development in various plants. Among the rice subclass-I and -II SnRK2s, osmotic stress/ABA–activated protein kinase 2 (SAPK2) may be the primary mediator of ABA signaling. However, SAPK2 has not been comprehensively characterized. In this study, we elucidated the functional properties of SAPK2 using loss-of-function mutants produced with the CRISPR/Cas9 system. The SAPK2 expression level was strongly upregulated by drought, high-salinity, and polyethylene glycol (PEG) treatments. The sapk2 mutants exhibited an ABA-insensitive phenotype during the germination and post-germination stages, suggesting that SAPK2 had a pivotal role related to ABA-mediated seed dormancy. The sapk2 mutants were more sensitive to drought stress and reactive oxygen species (ROS) than the wild-type plants, indicating that SAPK2 was important for responses to drought conditions in rice. An additional investigation revealed that SAPK2 increased drought tolerance in the following two ways: (i) by reducing water loss via the accumulation of compatible solutes, promoting stomatal closure, and upregulating the expression levels of stress-response genes such as OsRab16b, OsRab21, OsbZIP23, OsLEA3, OsOREB1 and slow anion channel (SLAC)-associated genes such as OsSLAC1 and OsSLAC7; (ii) by inducing the expression of antioxidant enzyme genes to promote ROS-scavenging abilities that will ultimately decrease ROS damages. Moreover, we also observed that SAPK2 significantly increased the tolerance of rice plants to salt and PEG stresses. These findings imply that SAPK2 is a potential candidate gene for future crop improvement studies.


Molecular Plant | 2017

The bHLH Transcription Factors MYC2, MYC3, and MYC4 Are Required for Jasmonate-Mediated Inhibition of Flowering in Arabidopsis

Houping Wang; Yang Li; Jinjing Pan; Dengji Lou; Yanru Hu; Diqiu Yu

In plants, the floral transition is flexibly controlled by various environmental conditions and endogenous developmental cues. In Arabidopsis, six major flowering pathways respond to changes in these factors (Fornara et al., 2010). The photoperiod, vernalization, and ambient pathways monitor exogenous signals from the environment such as day length, minimum winter temperature, and ambient temperature (Fornara et al., 2010). By contrast, the autonomous, gibberellin, and age pathways respond to endogenous cues linked to developmental status (Fornara et al., 2010). Accumulating evidence indicates that the six flowering pathways converge in a network to regulate floral integrator genes FLOWERING LOCUS T (FT), TWIN SISTER OF FT (TSF), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (Fornara et al., 2010).


Journal of Integrative Plant Biology | 2018

Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea : VQ10 interacts with WRKY8 to modulate defense responses

Junqiu Chen; Houping Wang; Yang Li; Jinjing Pan; Yanru Hu; Diqiu Yu

Recent studies in Arabidopsis have revealed that some VQ motif-containing proteins physically interact with WRKY transcription factors; however, their specific biological functions are still poorly understood. In this study, we confirmed the interaction between VQ10 and WRKY8, and show that VQ10 and WRKY8 formed a complex in the plant cell nucleus. Yeast two-hybrid analysis showed that the middle region of WRKY8 and the VQ motif of VQ10 are critical for their interaction, and that this interaction promotes the DNA-binding activity of WRKY8. Further investigation revealed that the VQ10 protein was exclusively localized in the nucleus, and VQ10 was predominantly expressed in siliques. VQ10 expression was strongly responsive to the necrotrophic fungal pathogen, Botrytis cinerea and defense-related hormones. Phenotypic analysis showed that disruption of VQ10 increased mutant plants susceptibility to the fungal pathogen B. cinerea, whereas constitutive-expression of VQ10 enhanced resistance to B. cinerea. Consistent with these findings, expression of the defense-related PLANT DEFENSIN1.2 (PDF1.2) gene was decreased in vq10 mutant plants, after B. cinerea infection, but increased in VQ10-overexpressing transgenic plants. Taken together, our findings provide evidence that VQ10 physically interacts with WRKY8 and positively regulates plant basal resistance against the necrotrophic fungal pathogen B. cinerea.


BMC Plant Biology | 2018

The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice

Dengji Lou; Houping Wang; Diqiu Yu

BackgroundThe sucrose non-fermenting-1-related protein kinase 2 family (SnRK2s) unifies different abiotic stress signals in plants. To date, the functions of two rice SnRK2s, osmotic stress/ABA-activated protein kinase 1 (SAPK1) and SAPK2, have been unknown. We investigated their roles in response to salt stress by generating loss-of-function lines using the CRISPR/Cas9 system and by overexpressing these proteins in transgenic rice plants.ResultsExpression profiling revealed that SAPK1 and SAPK2 expression were strongly induced by drought, NaCl, and PEG treatment, but not by ABA. SAPK2 expression was highest in the leaves, followed by the roots, whereas SAPK1 was highest expressed in roots followed by leaves. Both proteins were localized to the nucleus and the cytoplasm. Under salt stress, sapk1, sapk2 and, in particular, sapk1/2 mutants, exhibited reduced germination rates, more severe growth inhibition, more distinct chlorosis, reduced chlorophyll contents, and reduced survival rates in comparison with the wild-type plants. In contrast, SAPK1- and SAPK2-overexpression lines had increased germination rates and reduced sensitivities to salt; including mild reductions in growth inhibition, reduced chlorosis, increased chlorophyll contents and improved survival rates in comparison with the wild-type plants. These results suggest that SAPK1 and SAPK2 may function collaboratively as positive regulators of salt stress tolerance at the germination and seedling stages. We also found that SAPK1 and SAPK2 affected the osmotic potential following salt stress by promoting the generation of osmotically active metabolites such as proline. SAPK1 and SAPK2 also improved reactive oxygen species (ROS) detoxification following salt stress by promoting the generation of ROS scavengers such as ascorbic acid, and by increasing the expression levels of proteins such as superoxide dismutase (SOD) and catalase (CAT). SAPK1 and SAPK2 may function collaboratively in reducing Na+ toxicity by affecting the Na+ distribution between roots and shoots, Na+ exclusion from the cytoplasm, and Na+ sequestration into the vacuoles. These effects may be facilitated through the expression of Na+-and K+-homeostasis-related genes.ConclusionSAPK1 and SAPK2 may function collaboratively as positive regulators of salt stress tolerance at the germination and seedling stages in rice. SAPK1 and SAPK2 may be useful to improve salt tolerance in crop plants.


Journal of Experimental Botany | 2017

Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana

Yang Li; Houping Wang; Xiaoli Li; Gang Liang; Diqiu Yu

bHLH48 and bHLH60 regulate GA-mediated flowering by activating the expression of FT under long-day conditions.

Collaboration


Dive into the Houping Wang's collaboration.

Top Co-Authors

Avatar

Diqiu Yu

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Yanru Hu

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Jinjing Pan

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Dengji Lou

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Yang Li

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Gang Liang

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Fang Wang

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Junqiu Chen

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Ligang Chen

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Liping Zhang

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Researchain Logo
Decentralizing Knowledge